一 概念介绍
Index Condition Pushdown (ICP)是MySQL 5.6 版本中的新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。
a 当关闭ICP时,index 仅仅是data access 的一种访问方式,存储引擎通过索引回表获取的数据会传递到MySQL Server 层进行where条件过滤。
b 当打开ICP时,如果部分where条件能使用索引中的字段,MySQL Server 会把这部分下推到引擎层,可以利用index过滤的where条件在存储引擎层进行数据过滤,而非将所有通过index access的结果传递到MySQL server层进行where过滤.
优化效果:ICP能减少引擎层访问基表的次数和MySQL Server 访问存储引擎的次数,减少io次数,提高查询语句性能。
二 原理
Index Condition Pushdown is not used:
1 Get the next row, first by reading the index tuple, and then by using the index tuple to locate and read the full table row.
2 Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
Index Condition Pushdown is used
1 Get the next row s index tuple (but not the full table row).
2 Test the part of the WHERE condition that applies to this table and can be checked using only index columns.
If the condition is not satisfied, proceed to the index tuple for the next row.
3 If the condition is satisfied, use the index tuple to locate and read the full table row.
4 est the remaining part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
三 实践案例
a 环境准备
数据库版本 5.6.16
关闭缓存
代码如下:
set query_cache_size=0;
set query_cache_type=OFF;
测试数据下载地址
b 当开启ICP时
代码如下:
mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select * from employees where first_name='Anneke' and last_name like '%sig' ;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10006 | 1953-04-20 | Anneke | Preusig | F | 1989-06-02 |
+--------+------------+------------+-----------+--------+------------+
1 row in set (0.00 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+--------------------------------------------------------------------------------+
| 1 | 0.00060275 | select * from employees where first_name='Anneke' and last_name like '%sig' |
+----------+------------+--------------------------------------------------------------------------------+
3 rows in set, 1 warning (0.00 sec)
此时情况下根据MySQL的最左前缀原则, first_name 可以使用索引,last_name采用了like 模糊查询,不能使用索引。
c 关闭ICP
代码如下:
mysql> set optimizer_switch='index_condition_pushdown=off';
Query OK, 0 rows affected (0.00 sec)
mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select * from employees where first_name='Anneke' and last_name like '%sig' ;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10006 | 1953-04-20 | Anneke | Preusig | F | 1989-06-02 |
+--------+------------+------------+-----------+--------+------------+
1 row in set (0.00 sec)
mysql> SET profiling = 0;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+--------------------------------------------------------------------------------+
| 2 | 0.00097000 | select * from employees where first_name='Anneke' and last_name like '%sig' |
+----------+------------+--------------------------------------------------------------------------------+
6 rows in set, 1 warning (0.00 sec)
当开启ICP时 查询在sending data环节时间消耗是 0.000189s
代码如下:
mysql> show profile cpu,block io for query 1;
+----------------------+----------+----------+------------+--------------+---------------+
| Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+--------------+---------------+
| starting | 0.000094 | 0.000000 | 0.000000 | 0 | 0 |
| checking permissions | 0.000011 | 0.000000 | 0.000000 | 0 | 0 |
| Opening tables | 0.000025 | 0.000000 | 0.000000 | 0 | 0 |
| init | 0.000044 | 0.000000 | 0.000000 | 0 | 0 |
| System lock | 0.000014 | 0.000000 | 0.000000 | 0 | 0 |
| optimizing | 0.000021 | 0.000000 | 0.000000 | 0 | 0 |
| statistics | 0.000093 | 0.000000 | 0.000000 | 0 | 0 |
| preparing | 0.000024 | 0.000000 | 0.000000 | 0 | 0 |
| executing | 0.000006 | 0.000000 | 0.000000 | 0 | 0 |
| Sending data | 0.000189 | 0.000000 | 0.000000 | 0 | 0 |
| end | 0.000019 | 0.000000 | 0.000000 | 0 | 0 |
| query end | 0.000012 | 0.000000 | 0.000000 | 0 | 0 |
| closing tables | 0.000013 | 0.000000 | 0.000000 | 0 | 0 |
| freeing items | 0.000034 | 0.000000 | 0.000000 | 0 | 0 |
| cleaning up | 0.000007 | 0.000000 | 0.000000 | 0 | 0 |
+----------------------+----------+----------+------------+--------------+---------------+
15 rows in set, 1 warning (0.00 sec)
当关闭ICP时 查询在sending data环节时间消耗是 0.000735s
代码如下:
mysql> show profile cpu,block io for query 2;
+----------------------+----------+----------+------------+--------------+---------------+
| Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+--------------+---------------+
| starting | 0.000045 | 0.000000 | 0.000000 | 0 | 0 |
| checking permissions | 0.000007 | 0.000000 | 0.000000 | 0 | 0 |
| Opening tables | 0.000015 | 0.000000 | 0.000000 | 0 | 0 |
| init | 0.000024 | 0.000000 | 0.000000 | 0 | 0 |
| System lock | 0.000009 | 0.000000 | 0.000000 | 0 | 0 |
| optimizing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 |
| statistics | 0.000049 | 0.000000 | 0.000000 | 0 | 0 |
| preparing | 0.000016 | 0.000000 | 0.000000 | 0 | 0 |
| executing | 0.000005 | 0.000000 | 0.000000 | 0 | 0 |
| Sending data | 0.000735 | 0.001000 | 0.000000 | 0 | 0 |
| end | 0.000008 | 0.000000 | 0.000000 | 0 | 0 |
| query end | 0.000008 | 0.000000 | 0.000000 | 0 | 0 |
| closing tables | 0.000009 | 0.000000 | 0.000000 | 0 | 0 |
| freeing items | 0.000023 | 0.000000 | 0.000000 | 0 | 0 |
| cleaning up | 0.000007 | 0.000000 | 0.000000 | 0 | 0 |
+----------------------+----------+----------+------------+--------------+---------------+
15 rows in set, 1 warning (0.00 sec)
从上面的profile 可以看出ICP 开启时整个sql 执行时间是未开启的2/3,sending data 环节的时间消耗前者仅是后者的1/4。
ICP 开启时的执行计划 含有 Using index condition 标示 ,表示优化器使用了ICP对数据访问进行优化。
代码如下:
mysql> explain select * from employees where first_name='Anneke' and last_name like '%nta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 44 | const | 224 | Using index condition |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
1 row in set (0.00 sec)
ICP 关闭时的执行计划显示use where.
代码如下:
mysql> explain select * from employees where first_name='Anneke' and last_name like '%nta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 44 | const | 224 | Using where |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
1 row in set (0.00 sec)
案例分析
以上面的查询为例关闭ICP 时,存储引擎通前缀index first_name 访问表中225条first_name 为Anneke的数据,并在MySQL server层根据last_name like '%sig' 进行过滤
开启ICP 时,last_name 的like '%sig'条件可以通过索引字段last_name 进行过滤,在存储引擎内部通过与where条件的对比,直接过滤掉不符合条件的数据。该过程不回表,只访问符合条件的1条记录并返回给MySQL Server ,有效的减少了io访问和各层之间的交互。
ICP 关闭时 ,仅仅使用索引作为访问数据的方式。
ICP 开启时 ,MySQL将在存储引擎层 利用索引过滤数据,减少不必要的回表,注意 虚线的using where 表示如果where条件中含有没有被索引的字段,则还是要经过MySQL Server 层过滤。
四 ICP的使用限制
1 当sql需要全表访问时,ICP的优化策略可用于range, ref, eq_ref, ref_or_null 类型的访问数据方法 。
2 支持InnoDB和MyISAM表。
3 ICP只能用于二级索引,不能用于主索引。
4 并非全部where条件都可以用ICP筛选。
如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
5 ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。
6 5.6 版本的不支持分表的ICP 功能,5.7 版本的开始支持。
7 当sql 使用覆盖索引时,不支持ICP 优化方法。
代码如下:
mysql> explain select * from employees where first_name='Anneke' and last_name='Porenta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 94 | const,const | 1 | Using index condition |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
1 row in set (0.00 sec)
mysql> explain select first_name,last_name from employees where first_name='Anneke' and last_name='Porenta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 94 | const,const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
1 row in set (0.00 sec)

MySQLはオープンソースのリレーショナルデータベース管理システムであり、主にデータを迅速かつ確実に保存および取得するために使用されます。その実用的な原則には、クライアントリクエスト、クエリ解像度、クエリの実行、返品結果が含まれます。使用法の例には、テーブルの作成、データの挿入とクエリ、および参加操作などの高度な機能が含まれます。一般的なエラーには、SQL構文、データ型、およびアクセス許可、および最適化の提案には、インデックスの使用、最適化されたクエリ、およびテーブルの分割が含まれます。

MySQLは、データストレージ、管理、クエリ、セキュリティに適したオープンソースのリレーショナルデータベース管理システムです。 1.さまざまなオペレーティングシステムをサポートし、Webアプリケーションやその他のフィールドで広く使用されています。 2。クライアントサーバーアーキテクチャとさまざまなストレージエンジンを通じて、MySQLはデータを効率的に処理します。 3.基本的な使用には、データベースとテーブルの作成、挿入、クエリ、データの更新が含まれます。 4.高度な使用には、複雑なクエリとストアドプロシージャが含まれます。 5.一般的なエラーは、説明ステートメントを介してデバッグできます。 6.パフォーマンスの最適化には、インデックスの合理的な使用と最適化されたクエリステートメントが含まれます。

MySQLは、そのパフォーマンス、信頼性、使いやすさ、コミュニティサポートに選択されています。 1.MYSQLは、複数のデータ型と高度なクエリ操作をサポートし、効率的なデータストレージおよび検索機能を提供します。 2.クライアントサーバーアーキテクチャと複数のストレージエンジンを採用して、トランザクションとクエリの最適化をサポートします。 3.使いやすく、さまざまなオペレーティングシステムとプログラミング言語をサポートしています。 4.強力なコミュニティサポートを提供し、豊富なリソースとソリューションを提供します。

INNODBのロックメカニズムには、共有ロック、排他的ロック、意図ロック、レコードロック、ギャップロック、次のキーロックが含まれます。 1.共有ロックにより、トランザクションは他のトランザクションが読み取らないようにデータを読み取ることができます。 2.排他的ロックは、他のトランザクションがデータの読み取りと変更を防ぎます。 3.意図ロックは、ロック効率を最適化します。 4。ロックロックインデックスのレコードを記録します。 5。ギャップロックロックインデックス記録ギャップ。 6.次のキーロックは、データの一貫性を確保するためのレコードロックとギャップロックの組み合わせです。

MySQLクエリのパフォーマンスが低いことの主な理由には、インデックスの使用、クエリオプティマイザーによる誤った実行計画の選択、不合理なテーブルデザイン、過剰なデータボリューム、ロック競争などがあります。 1.インデックスがゆっくりとクエリを引き起こし、インデックスを追加するとパフォーマンスが大幅に向上する可能性があります。 2。説明コマンドを使用してクエリ計画を分析し、オプティマイザーエラーを見つけます。 3.テーブル構造の再構築と結合条件を最適化すると、テーブルの設計上の問題が改善されます。 4.データボリュームが大きい場合、パーティション化とテーブル分割戦略が採用されます。 5.高い並行性環境では、トランザクションの最適化とロック戦略は、ロック競争を減らすことができます。

データベースの最適化では、クエリ要件に従ってインデックス作成戦略を選択する必要があります。1。クエリに複数の列が含まれ、条件の順序が固定されている場合、複合インデックスを使用します。 2。クエリに複数の列が含まれているが、条件の順序が修正されていない場合、複数の単一列インデックスを使用します。複合インデックスは、マルチコラムクエリの最適化に適していますが、単一列インデックスは単一列クエリに適しています。

MySQLスロークエリを最適化するには、slowquerylogとperformance_schemaを使用する必要があります。1。LowerQueryLogを有効にし、しきい値を設定して、スロークエリを記録します。 2。performance_schemaを使用してクエリの実行の詳細を分析し、パフォーマンスのボトルネックを見つけて最適化します。

MySQLとSQLは、開発者にとって不可欠なスキルです。 1.MYSQLはオープンソースのリレーショナルデータベース管理システムであり、SQLはデータベースの管理と操作に使用される標準言語です。 2.MYSQLは、効率的なデータストレージと検索機能を介して複数のストレージエンジンをサポートし、SQLは簡単なステートメントを通じて複雑なデータ操作を完了します。 3.使用の例には、条件によるフィルタリングやソートなどの基本的なクエリと高度なクエリが含まれます。 4.一般的なエラーには、SQLステートメントをチェックして説明コマンドを使用することで最適化できる構文エラーとパフォーマンスの問題が含まれます。 5.パフォーマンス最適化手法には、インデックスの使用、フルテーブルスキャンの回避、参加操作の最適化、コードの読み取り可能性の向上が含まれます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

メモ帳++7.3.1
使いやすく無料のコードエディター

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン
