ラボの紹介
インターネットの発展により、企業はますます多くのデータを取得できるようになりました。このデータは、企業が顧客プロファイルと呼ばれるユーザーをより深く理解するのに役立ち、ユーザー エクスペリエンスを向上させることができます。ただし、これらのデータにはラベルのないデータが大量に含まれる可能性があります。すべてのデータに手動でラベルを付ける場合、2 つの問題が発生します。まず、手動でのラベル付けは時間がかかり、非効率的です。データ量が増加すると、より多くの人員を雇用する必要があり、時間がかかり、コストも高くなります。第 2 に、ユーザーの規模が増加するにつれて、手動のラベル付けではデータの増加に追いつくことが困難になります
パート 01、 半教師あり学習とは
半教師あり学習とは、ラベル付きデータとラベルなしデータの両方を使用してモデルをトレーニングすることを指します。半教師あり学習では通常、ラベル付きデータに基づいて属性空間を構築し、ラベルなしデータから有効な情報を抽出して属性空間を埋める(または再構築)します。したがって、半教師あり学習の初期トレーニング セットは、通常、ラベル付きデータ セット D1 とラベルなしデータ セット D2 に分割され、前処理や特徴抽出などの基本的な手順を通じて半教師あり学習モデルがトレーニングされ、トレーニングされたモデルが完成します。ユーザーにサービスを提供するための実稼働環境に使用されます。
#Part 02. 半教師あり学習の前提
効果的なラベルデータ補完を実現するためにラベル付けされたデータを使用して、データ内の「有用な」情報を使用し、データのセグメント化やその他の側面についていくつかの仮定を立てます。半教師あり学習の基本的な前提は、p(x) には p(y|x) の情報が含まれているということです。つまり、ラベルなしデータには、ラベル予測に役立ち、ラベル付きデータとは異なる、または困難な情報が含まれている必要があります。ラベル付けされたデータから、データから抽出された情報を取得します。さらに、アルゴリズムに役立ついくつかの仮定があります。たとえば、類似性仮説 (滑らかさ仮説) は、データ サンプルによって構築された属性空間において、近いサンプルまたは類似したサンプルが同じラベルを持つことを意味し、低密度分離仮説は、異なるラベルが存在する場所に異なるラベルを区別できる決定境界があることを意味します。いくつかのデータサンプルです。
上記の仮定の主な目的は、ラベル付きデータとラベルなしデータが同じデータ分布に由来することを示すことです。
パート 03、 半教師あり学習アルゴリズムの分類
半教師あり学習アルゴリズムは多数あります。 Transductive learning と Inductive learning (帰納モデル) に大別され、 2 つの違いは、モデル評価に使用されるテスト データ セットの選択 にあります。ダイレクトプッシュ半教師あり学習とは、ラベルを予測する必要があるデータセットがトレーニングに使用されるラベルなしのデータセットであることを意味し、学習の目的は予測結果の精度をさらに向上させることです。帰納学習は、まったく未知のデータセットのラベルを予測します。
さらに、一般的な半教師あり学習アルゴリズムのステップは次のとおりです。最初のステップは、ラベル付きデータでモデルをトレーニングし、次に使用することです。このモデルは、ラベルのないデータに擬似ラベルを付け、擬似ラベルとラベル付きデータを新しいトレーニング セットに結合し、このトレーニング セットで新しいモデルをトレーニングし、最後にこのモデルを使用して予測データ セットにラベルを付けます。
パート 04. 概要
半教師あり学習の最大の問題は、多くの場合、モデルのパフォーマンスがラベル付き学習に依存することです。ラベル付きデータセットの品質要件は比較的高く、半教師あり学習モデルの予測精度でさえ、ラベル付きデータセットに基づく教師ありモデルの結果とそれほど変わりません。ラベルのないデータの特徴を効果的に抽出するため、有効な情報はより多くのリソースを消費します。したがって、
半教師あり学習の開発の方向性は、アルゴリズムの堅牢性とデータ抽出の有効性を向上させることです。 現在、半教師あり学習の分野では、PU 学習 (正および負のサンプル学習) が人気のアルゴリズムです。このタイプのアルゴリズムは主に、陽性サンプルとラベルのないデータのみを含むデータセットに適用されます。その利点は、特定のシナリオでは、信頼できる陽性のサンプル データ セットを比較的簡単に取得でき、データ量が比較的大きいことです。たとえば、スパム検出では、大量の通常の電子メール データを簡単に取得できます。
以上がタイトルを書き直しました: 半教師あり学習の応用分野とその関連シナリオの探索の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

HiddenLayerの画期的な研究は、主要な大規模な言語モデル(LLMS)における重大な脆弱性を明らかにしています。 彼らの発見は、ほぼすべての主要なLLMSを回避できる「政策の人形劇」と呼ばれる普遍的なバイパス技術を明らかにしています

環境責任と廃棄物の削減の推進は、企業の運営方法を根本的に変えています。 この変革は、製品開発、製造プロセス、顧客関係、パートナーの選択、および新しいものの採用に影響します

高度なAIハードウェアに関する最近の制限は、AI優位のためのエスカレートする地政学的競争を強調し、中国の外国半導体技術への依存を明らかにしています。 2024年、中国は3,850億ドル相当の半導体を大量に輸入しました

GoogleからのChromeの強制的な売却の可能性は、ハイテク業界での激しい議論に火をつけました。 Openaiが65%の世界市場シェアを誇る大手ブラウザを取得する見込みは、THの将来について重要な疑問を提起します

全体的な広告の成長を上回っているにもかかわらず、小売メディアの成長は減速しています。 この成熟段階は、生態系の断片化、コストの上昇、測定の問題、統合の複雑さなど、課題を提示します。 ただし、人工知能

古いラジオは、ちらつきと不活性なスクリーンのコレクションの中で静的なパチパチと鳴ります。簡単に不安定になっているこの不安定な電子機器の山は、没入型展示会の6つのインスタレーションの1つである「e-waste land」の核心を形成しています。

Google Cloudの次の2025年:インフラストラクチャ、接続性、およびAIに焦点を当てています Google Cloudの次の2025年の会議では、多くの進歩を紹介しました。 特定の発表の詳細な分析については、私の記事を参照してください

今週はAIとXR:AIを搭載した創造性の波が、音楽の世代から映画制作まで、メディアとエンターテイメントを席巻しています。 見出しに飛び込みましょう。 AIに生成されたコンテンツの影響力の高まり:テクノロジーコンサルタントのShelly Palme


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1
使いやすく無料のコードエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









