現在、多くの有名モデルが数学が得意だと主張しています。本当の才能を持っているのは誰でしょうか?連続テスト問題で「カンニング」したのは誰ですか?
今年、誰かがハンガリー国立数学最終試験のために発表されたばかりの問題について包括的なテストを実施しました
多くのモデルが突然成功しました"元の形状になりました。」 。
最初に緑色の部分を見てください。これらの大規模モデルは、古典的な数学テスト セット GSM8k と新しい論文で同様の結果を示しています。 一緒にそれらは参照標準 を形成します。
##赤い部分# を見ると、GSM8K での結果は、同じパラメータ スケールを持つ大型モデルの結果よりも大幅に高くなります。到着次第 新品紙のスコアは大幅に下がり、同サイズの大型モデルとほぼ同等でした。 研究者らは、彼らを 「GSM8k でトレーニングを受けた疑いがある、または既知である」
として分類しました。このテストを見た後、これまで見たことのない質問を評価し始めるべきだと言う人もいます。
この種のテストは、と考える人もいます。誰もが実際に大規模モデルを使用した経験が現在唯一信頼できる評価方法です
Musk Grok は GPT-4 に次いで 2 番目であり、オープンソースの Llemma は優れた結果を示しています
テスター
大きなモデルにハンガリーの国立高校数学の最終試験を受けさせてください。このトリックは
Musk の xAI
xAI の Grok 大規模モデルがネットワーク データ内のテスト問題を誤って認識したという問題を排除するために、いくつかの一般的なテスト セットに加えて、このテストも実施されました 今年のこの試験テストは 5 月末に完了したばかりで、現在の大型モデルでは基本的にこの一連のテスト問題を見る機会がありませんでした。 #xAI は、比較のために GPT-3.5、GPT-4、および Claude 2 がリリースされたときにその結果も発表しました。
この一連のデータに基づいて、Paster はさらなるテストを実施しました。テスト オブジェクトは、強力な数学的機能を備えた複数のオープン ソース モデルでした。およびテスト問題は、各モデルのテスト スクリプトと回答結果は、誰もが他のモデルを確認してさらにテストできるように、Huggingface でオープンソース化されています。
結果は、GPT-4 と Claude-2 が最初の段階を形成し、GSM8k と新しい論文で非常に高いスコアを示していることを示しています。 これは、GPT-4 と Claude 2 のトレーニング データに GSM8k のリークされた質問がないという意味ではありませんが、少なくともそれらは優れた一般化機能を備えており、新しい質問を正しく解決できるため、リークされた質問は存在しません。お手入れ。
次に、Musk xAI の Grok-0 (33B) と Grok-1
が良好なパフォーマンスを示しました。
Grok-1 は「不正行為をしないグループ」の中で最も高いスコアを持っており、彼の新しい論文のスコアは Claude 2 よりもさらに高くなっています。 GSM8k 上の Grok-0 のパフォーマンスは GPT3.5-Turbo に近く、新しい論文ではわずかに劣ります。
上記のクローズド モデルを除き、テスト内の他のモデルはすべてオープン ソースです。Code Llama シリーズ
は Meta の独自バージョンです。 Llama 2 の基本的には、自然言語に基づいてコードを生成することに重点を置いて微調整されています。
Code Llama に基づいて、多くの大学や研究機関が共同で Llemma シリーズ を立ち上げ、EleutherAI によってオープンソース化されました。 チームは、科学論文、数学を含むネットワーク データ、および数学的コードから Proof-Pile-2 データセットを収集しました。トレーニング後、Llemma はツールを使用して、それ以上の微調整を行わずに形式的な定理証明を行うことができます。
新しい論文によると、Llemma 34B のパフォーマンスは GPT-3.5 Turbo レベルに近いです
Mistral シリーズ は、フランスの AI ユニコーンである Mistral AI によってトレーニングされています。Apache2.0 のオープンソース契約は Llama よりも緩和されており、羊 Tuo ファミリーに次いで、オープンソース コミュニティで最も人気のある基本モデル。 ##OpenChat 3.5 および MetaMath Mistral はすべてミストラル エコシステムに基づいて微調整されています。 および MAmmoTH Code は、Code Llama エコシステムに基づいています。 オープンソースの大規模モデルを実際のビジネスに採用することを選択する人は、このグループを避けるように注意する必要があります。なぜなら、これらのモデルはランキングを上げるためだけに優れたパフォーマンスを発揮する可能性が高いためですが、実際の機能はそれほど強力ではない可能性があります。同じスケールの他のモデル 多くのネチズンは、この実験がまさにモデルの実際の状況を理解するために必要なものであると信じて、この実験に対してパスター氏に感謝の意を表しました。 懸念を表明した人もいます: この日から、大規模モデルをトレーニングする全員が、過去のハンガリーの数学試験問題を追加することになります。 同時に、解決策は、独自のテストを行う # を設立することであると考えています。
専門の大規模モデル評価会社 #テスト ベンチマークを確立することです。
以上が大規模不正モデルを見分ける1つのトリック、医師の弟のオープンソースAI数学「デーモンミラー」の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Apollo Researchの新しいレポートによると、高度なAIシステムの未確認の内部展開は、重大なリスクをもたらします。 主要なAI企業の間で一般的なこの監視の欠如は、Uncontに及ぶ潜在的な壊滅的な結果を可能にします

従来の嘘検出器は時代遅れです。リストバンドで接続されたポインターに依存すると、被験者のバイタルサインと身体的反応を印刷する嘘発見器は、嘘を識別するのに正確ではありません。これが、嘘の検出結果が通常裁判所で採用されない理由ですが、多くの罪のない人々が投獄されています。 対照的に、人工知能は強力なデータエンジンであり、その実用的な原則はすべての側面を観察することです。これは、科学者がさまざまな方法で真実を求めるアプリケーションに人工知能を適用できることを意味します。 1つのアプローチは、嘘発見器のように尋問されている人の重要な符号応答を分析することですが、より詳細かつ正確な比較分析を行います。 別のアプローチは、言語マークアップを使用して、人々が実際に言うことを分析し、論理と推論を使用することです。 ことわざにあるように、ある嘘は別の嘘を繁殖させ、最終的に

イノベーションの先駆者である航空宇宙産業は、AIを活用して、最も複雑な課題に取り組んでいます。 近代的な航空の複雑さの増加は、AIの自動化とリアルタイムのインテリジェンス機能を必要とします。

ロボット工学の急速な発展により、私たちは魅力的なケーススタディをもたらしました。 NoetixのN2ロボットの重量は40ポンドを超えており、高さは3フィートで、逆流できると言われています。 UnitreeのG1ロボットの重量は、N2のサイズの約2倍で、高さは約4フィートです。また、競争に参加している多くの小さなヒューマノイドロボットがあり、ファンによって前進するロボットさえあります。 データ解釈 ハーフマラソンは12,000人以上の観客を惹きつけましたが、21人のヒューマノイドロボットのみが参加しました。政府は、参加しているロボットが競争前に「集中トレーニング」を実施したと指摘したが、すべてのロボットが競争全体を完了したわけではない。 チャンピオン - 北京ヒューマノイドロボットイノベーションセンターによって開発されたティアンゴニ

人工知能は、現在の形式では、真にインテリジェントではありません。既存のデータを模倣して洗練するのに熟達しています。 私たちは人工知能を作成するのではなく、人工的な推論を作成しています。情報を処理するマシン、人間は

レポートでは、更新されたインターフェイスがGoogle Photos Androidバージョン7.26のコードに隠されていることがわかり、写真を見るたびに、新しく検出された顔のサムネイルの行が画面の下部に表示されます。 新しいフェイシャルサムネイルには名前タグが欠落しているため、検出された各人に関する詳細情報を見るには、個別にクリックする必要があると思います。今のところ、この機能は、Googleフォトが画像で見つけた人々以外の情報を提供しません。 この機能はまだ利用できないため、Googleが正確にどのように使用するかはわかりません。 Googleはサムネイルを使用して、選択した人のより多くの写真を見つけるためにスピードアップしたり、編集して個人を選択するなど、他の目的に使用することもできます。待って見てみましょう。 今のところ

補強能力は、人間のフィードバックに基づいて調整するためにモデルを教えることにより、AI開発を揺さぶりました。それは、監督された学習基盤と報酬ベースの更新をブレンドして、より安全で、より正確に、そして本当に助けます

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









