LLM 幻覚とは、大規模言語モデル (LLM) が実際のパターンやオブジェクトに準拠しない無意味または不正確な出力を生成する現象です。これらの誤った AI 出力は、次のようなさまざまな要因から生じます。
過学習: LLM はトレーニング データのノイズとバイアスをパターンとして学習し、テスト データに対するモデルのパフォーマンスが低下し、誤った出力が生成されます。 。
モデルの複雑性が高い: LLM はモデルの複雑性が高いため、存在しない相関関係を認識して、錯覚を引き起こす可能性があります。
生成 AI システムを開発している大手企業は、AI 幻覚の問題に対処するための措置を講じていますが、一部の専門家は、誤った出力を完全に排除することは不可能である可能性があると考えています。
Google はモデルをインターネットに接続して、データとネットワーク情報からの地上応答をトレーニングすることで、過剰学習を削減します。
OpenAI は人間によるフィードバックと強化学習を使用して、ChatGPT の出力を改良します。彼らは、最終的な答えだけでなく、正しい推論ステップに対してモデルに報酬を与える「プロセス監視」を提案しています。これにより説明可能性は向上しますが、捏造に対する有効性を疑問視する人もいます。
AI 幻覚のリスクにもかかわらず、企業とユーザーは潜在的な害を相殺し、制限するための措置を講じることができます。これを解決する方法をいくつか紹介します。
高品質のトレーニング データを使用する
高品質のトレーニング データを使用することが、人工知能による幻覚を軽減する鍵となります。高品質のトレーニング データは、多様性があり、バランスが取れており、適切に構造化されており、現実世界の状況を反映している必要があります。
明確な使用目的
AI システムの特定の目的と許可された用途を明確に定義すると、AI システムを幻覚コンテンツから遠ざけることができます。開発者とユーザーは、人工知能モデルの機能と用途を明確に理解し、使用する際にはそれらを厳密に遵守する必要があります。
データ テンプレートを使用して人工知能の出力をガイドする
構造化データ テンプレートを使用すると、人工知能モデルが予想されるパターンに準拠した出力を生成するのに役立ちます。これらのテンプレートは、モデルへのデータ入力に一貫した形式を提供し、モデルの推論の範囲を制限します。
リミットリアクション
潜在的なモデル出力に制約と制限を設定すると、制御されない推測を減らすことができます。たとえば、明確な確率しきい値を定義し、フィルタリング ツールを使用して、期待を満たさない応答を除外できます。
システムの継続的なテストと改善
包括的なテストと継続的な監視を通じて、人工知能システムのパフォーマンスを継続的に改善できます。出力を評価すると、調整が必要な領域を特定でき、新しいデータを使用してモデルを再トレーニングし、その知識を更新できます。
人間の監視に依存する
人間の監視を含めることで、重要な保護を実現できます。人間の専門家が出力をレビューすると、状況に応じた判断を通じて、幻想的なコンテンツを捉えて修正できます。
アイデア プロンプト チェーン
アイデア プロンプト チェーンは、論理的思考チェーンを提供することで、人工知能モデルが複数ステップの推論を実行できるようにするテクノロジーです。このアプローチにより、数学などのタスクにおける人工知能モデルのパフォーマンスを向上させることができます。
タスクの分解とエージェンシー
タスクの分解とエージェンシーは、複雑なタスクを複数のサブタスクに分解することにより、人工知能モデルのパフォーマンスを向上させる方法です。この方法では、さまざまな人工知能モデルの利点を活用し、人工知能モデルの推論能力を向上させることができます。
人工知能 錯覚は人工知能の開発における課題ですが、効果的な対策を講じることで、そのリスクを効果的に軽減できます。
以上が大規模な言語モデルの幻覚を軽減する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

如果你一直在关注大型语言模型的架构,你可能会在最新的模型和研究论文中看到“SwiGLU”这个词。SwiGLU可以说是在大语言模型中最常用到的激活函数,我们本篇文章就来对它进行详细的介绍。SwiGLU其实是2020年谷歌提出的激活函数,它结合了SWISH和GLU两者的特点。SwiGLU的中文全称是“双向门控线性单元”,它将SWISH和GLU两种激活函数进行了优化和结合,以提高模型的非线性表达能力。SWISH是一种非常普遍的激活函数,它在大语言模型中得到广泛应用,而GLU则在自然语言处理任务中表现出

大型语言模型(LLM)是在巨大的文本数据库上训练的,在那里它们获得了大量的实际知识。这些知识嵌入到它们的参数中,然后可以在需要时使用。这些模型的知识在训练结束时被“具体化”。在预训练结束时,模型实际上停止学习。对模型进行对齐或进行指令调优,让模型学习如何充分利用这些知识,以及如何更自然地响应用户的问题。但是有时模型知识是不够的,尽管模型可以通过RAG访问外部内容,但通过微调使用模型适应新的领域被认为是有益的。这种微调是使用人工标注者或其他llm创建的输入进行的,模型会遇到额外的实际知识并将其整合

随着开源大型语言模型的性能不断提高,编写和分析代码、推荐、文本摘要和问答(QA)对的性能都有了很大的提高。但是当涉及到QA时,LLM通常会在未训练数据的相关的问题上有所欠缺,很多内部文件都保存在公司内部,以确保合规性、商业秘密或隐私。当查询这些文件时,会使得LLM产生幻觉,产生不相关、捏造或不一致的内容。一种处理这一挑战的可行技术是检索增强生成(RAG)。它涉及通过引用训练数据源之外的权威知识库来增强响应的过程,以提升生成的质量和准确性。RAG系统包括一个检索系统,用于从语料库中检索相关文档片段

2024年是大型语言模型(LLM)迅速发展的一年。在LLM的训练中,对齐方法是一个重要的技术手段,其中包括监督微调(SFT)和依赖人类偏好的人类反馈强化学习(RLHF)。这些方法在LLM的发展中起到了至关重要的作用,但是对齐方法需要大量的人工注释数据。面对这一挑战,微调成为一个充满活力的研究领域,研究人员积极致力于开发能够有效利用人类数据的方法。因此,对齐方法的发展将推动LLM技术的进一步突破。加州大学最近进行了一项研究,介绍了一种名为SPIN(SelfPlayfInetuNing)的新技术。S

在使用大型语言模型(LLM)时,幻觉是一个常见问题。尽管LLM可以生成流畅连贯的文本,但其生成的信息往往不准确或不一致。为了防止LLM产生幻觉,可以利用外部的知识来源,比如数据库或知识图谱,来提供事实信息。这样一来,LLM可以依赖这些可靠的数据源,从而生成更准确和可靠的文本内容。向量数据库和知识图谱向量数据库向量数据库是一组表示实体或概念的高维向量。它们可以用于度量不同实体或概念之间的相似性或相关性,通过它们的向量表示进行计算。一个向量数据库可以根据向量距离告诉你,“巴黎”和“法国”比“巴黎”和

组查询注意力(GroupedQueryAttention)是大型语言模型中的一种多查询注意力力方法,它的目标是在保持MQA速度的同时实现MHA的质量。GroupedQueryAttention将查询分组,每个组内的查询共享相同的注意力权重,这有助于降低计算复杂度和提高推理速度。这篇文章中,我们将解释GQA的思想以及如何将其转化为代码。GQA是在论文GQA:TrainingGeneralizedMulti-QueryTransformerModelsfromMulti-HeadCheckpoint

随着语言模型扩展到前所未有的规模,对下游任务进行全面微调变得十分昂贵。为了解决这个问题,研究人员开始关注并采用PEFT方法。PEFT方法的主要思想是将微调的范围限制在一小部分参数上,以降低计算成本,同时仍能实现自然语言理解任务的最先进性能。通过这种方式,研究人员能够在保持高性能的同时,节省计算资源,为自然语言处理领域带来新的研究热点。RoSA是一种新的PEFT技术,通过在一组基准测试的实验中,发现在使用相同参数预算的情况下,RoSA表现出优于先前的低秩自适应(LoRA)和纯稀疏微调方法。本文将深

大型语言模型(LLM)的出现刺激了多个领域的创新。然而,在思维链(CoT)提示和情境学习(ICL)等策略的驱动下,提示的复杂性不断增加,这给计算带来了挑战。这些冗长的提示需要大量的资源来进行推理,因此需要高效的解决方案。本文将介绍LLMLingua与专有的LlamaIndex的集成执行高效推理LLMLingua是微软的研究人员发布在EMNLP2023的一篇论文,LongLLMLingua是一种通过快速压缩增强llm在长上下文场景中感知关键信息的能力的方法。LLMLingua与llamindex的


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン
