検索
ホームページバックエンド開発C++C++ コードで同時プログラミングを実行するにはどうすればよいですか?

C++ コードで同時プログラミングを実行するにはどうすればよいですか?

C コードの同時プログラミングを実行するにはどうすればよいですか?

コンピューター技術の発展に伴い、マルチコア プロセッサーと並列コンピューティングのアプリケーションがますます一般的になってきています。 。プログラム開発者にとって、マルチコア プロセッサの並列コンピューティング機能を利用してプログラムのパフォーマンスを向上させる方法は重要なテーマとなっています。 C は強力なプログラミング言語として、同時プログラミングのための豊富なツールとライブラリを提供します。この記事では、C コードで並行プログラミングを実行する方法を紹介します。

1. スレッドとプロセス

C では、スレッドとプロセスを使用して並行プログラミングを実装できます。スレッドはプログラムの実行単位であり、複数のスレッドを並行して実行できます。一方、プロセスはプログラムのインスタンスであり、異なるプロセスを並行して実行できます。並列コンピューティングは、複数のスレッドまたはプロセスを作成することで実現できます。

C はマルチスレッドのサポートを提供し、std::thread クラスを使用してスレッドを作成および管理できます。以下は簡単な例です:

#include <iostream>
#include <thread>

void hello() {
    std::cout << "Hello from thread!" << std::endl;
}

int main() {
    std::thread t(hello);
    t.join();
    return 0;
}

この例では、t という名前のスレッドを作成し、その join() 関数を呼び出してスレッドの実行が完了するのを待ちます。この例では、スレッド関数 hello() がメッセージを出力します。

2. ミューテックス ロック

同時プログラミングでは、複数のスレッドが同時に共有リソースにアクセスすると、データの競合や不確実な動作が発生する可能性があります。この状況を回避するには、ミューテックスを使用して共有リソースを保護します。 C は、ミューテックス ロックを実装するための std::mutex クラスを提供します。

次に、ミューテックス ロックの使用例を示します。

#include <iostream>
#include <thread>
#include <mutex>

std::mutex mtx;

void count() {
    std::lock_guard<std::mutex> lock(mtx);
    for (int i = 0; i < 10; ++i) {
        std::cout << i << std::endl;
    }
}

int main() {
    std::thread t1(count);
    std::thread t2(count);
    t1.join();
    t2.join();
    return 0;
}

この例では、ループ カウンタに同時にアクセスする 2 つのスレッド t1 と t2 を作成します。同時アクセスのセキュリティを確保するために、ミューテックスロック mtx を使用します。 std::lock_guard クラスは、ロックを自動的に解放するために使用される RAII (リソース取得、つまり初期化) クラスです。

3. 条件変数

並行プログラミングでは、スレッド間の通信と同期が必要になる場合があります。 C では、スレッドの待機と起動を実装するための条件変数 (condition_variable) が提供されます。

以下は条件変数の使用例です:

#include <iostream>
#include <thread>
#include <mutex>
#include <condition_variable>

std::mutex mtx;
std::condition_variable cv;
bool ready = false;

void worker() {
    std::unique_lock<std::mutex> lock(mtx);
    cv.wait(lock, [] { return ready; });
    std::cout << "Worker thread is running!" << std::endl;
}

int main() {
    std::thread t(worker);
    std::this_thread::sleep_for(std::chrono::seconds(2));
    
    {
        std::lock_guard<std::mutex> lock(mtx);
        ready = true;
    }
    cv.notify_one();
    
    t.join();
    return 0;
}

この例では、ready 変数の値が true になるのを待つスレッド t を作成します。メインスレッドでは、2 秒間待機し、ready を true に設定し、条件変数 cv の Notice_one() 関数を通じて t スレッドに通知します。

4. 同時コンテナ

C は、複数のスレッド Access やコンテナ内の要素を変更します。

以下は同時キュー std::queue の使用例です:

#include <iostream>
#include <thread>
#include <queue>

std::queue<int> q;
std::mutex mtx;

void producer() {
    for (int i = 0; i < 10; ++i) {
        std::lock_guard<std::mutex> lock(mtx);
        q.push(i);
    }
}

void consumer() {
    while (true) {
        std::lock_guard<std::mutex> lock(mtx);
        if (!q.empty()) {
            int value = q.front();
            q.pop();
            std::cout << "Consumed: " << value << std::endl;
        }
        else {
            break;
        }
    }
}

int main() {
    std::thread t1(producer);
    std::thread t2(consumer);
    t1.join();
    t2.join();
    return 0;
}

この例では、プロデューサー スレッドとコンシューマー スレッドを作成します。プロデューサ スレッドは要素をキューに追加し、コンシューマ スレッドは要素をキューから取得して消費します。同時アクセスのセキュリティを確保するために、ミューテックス ロック mtx を使用します。

概要:

スレッドとプロセスの同時プログラミングを通じて、マルチコア プロセッサの並列コンピューティング機能を最大限に活用し、プログラムのパフォーマンスを向上させることができます。 C は、並行プログラミングを実装するための、std::thread、std::mutex、std::condition_variable、並行コンテナなどの豊富なツールとライブラリを提供します。並行プログラミングを実行するときは、不確実な動作の発生を避けるために、データの競合と同期の問題に注意を払う必要があります。実際のアプリケーションでは、特定のニーズに基づいて適切な同時プログラミング ソリューションを選択すると、プログラムのパフォーマンスをさらに向上させることができます。

以上がC++ コードで同時プログラミングを実行するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Cコミュニティ:リソース、サポート、開発Cコミュニティ:リソース、サポート、開発Apr 13, 2025 am 12:01 AM

C学習者と開発者は、Stackoverflow、RedditのR/CPPコミュニティ、CourseraおよびEDXコース、Github、Professional Consulting Services、およびCPPCONのオープンソースプロジェクトからリソースとサポートを得ることができます。 1. StackOverFlowは、技術的な質問への回答を提供します。 2。RedditのR/CPPコミュニティが最新ニュースを共有しています。 3。CourseraとEDXは、正式なCコースを提供します。 4. LLVMなどのGitHubでのオープンソースプロジェクトやスキルの向上。 5。JetBrainやPerforceなどの専門的なコンサルティングサービスは、技術サポートを提供します。 6。CPPCONとその他の会議はキャリアを助けます

C#対C:各言語が優れている場所C#対C:各言語が優れている場所Apr 12, 2025 am 12:08 AM

C#は、開発効率とクロスプラットフォームのサポートを必要とするプロジェクトに適していますが、Cは高性能で基礎となるコントロールを必要とするアプリケーションに適しています。 1)C#は、開発を簡素化し、ガベージコレクションとリッチクラスライブラリを提供します。これは、エンタープライズレベルのアプリケーションに適しています。 2)Cは、ゲーム開発と高性能コンピューティングに適した直接メモリ操作を許可します。

Cの継続的な使用:その持久力の理由Cの継続的な使用:その持久力の理由Apr 11, 2025 am 12:02 AM

C継続的な使用の理由には、その高性能、幅広いアプリケーション、および進化する特性が含まれます。 1)高効率パフォーマンス:Cは、メモリとハードウェアを直接操作することにより、システムプログラミングと高性能コンピューティングで優れたパフォーマンスを発揮します。 2)広く使用されている:ゲーム開発、組み込みシステムなどの分野での輝き。3)連続進化:1983年のリリース以来、Cは競争力を維持するために新しい機能を追加し続けています。

CとXMLの未来:新たなトレンドとテクノロジーCとXMLの未来:新たなトレンドとテクノロジーApr 10, 2025 am 09:28 AM

CとXMLの将来の開発動向は次のとおりです。1)Cは、プログラミングの効率とセキュリティを改善するためのC 20およびC 23の標準を通じて、モジュール、概念、CORoutinesなどの新しい機能を導入します。 2)XMLは、データ交換および構成ファイルの重要なポジションを引き続き占有しますが、JSONとYAMLの課題に直面し、XMLSchema1.1やXpath3.1の改善など、より簡潔で簡単な方向に発展します。

最新のCデザインパターン:スケーラブルで保守可能なソフトウェアの構築最新のCデザインパターン:スケーラブルで保守可能なソフトウェアの構築Apr 09, 2025 am 12:06 AM

最新のCデザインモデルは、C 11以降の新機能を使用して、より柔軟で効率的なソフトウェアを構築するのに役立ちます。 1)ラムダ式とstd :: functionを使用して、オブザーバーパターンを簡素化します。 2)モバイルセマンティクスと完全な転送を通じてパフォーマンスを最適化します。 3)インテリジェントなポインターは、タイプの安全性とリソース管理を保証します。

Cマルチスレッドと並行性:並列プログラミングのマスタリングCマルチスレッドと並行性:並列プログラミングのマスタリングApr 08, 2025 am 12:10 AM

cマルチスレッドと同時プログラミングのコア概念には、スレッドの作成と管理、同期と相互排除、条件付き変数、スレッドプーリング、非同期プログラミング、一般的なエラーとデバッグ技術、パフォーマンスの最適化とベストプラクティスが含まれます。 1)STD ::スレッドクラスを使用してスレッドを作成します。この例は、スレッドが完了する方法を作成し、待つ方法を示しています。 2)共有リソースを保護し、データ競争を回避するために、STD :: MutexおよびSTD :: LOCK_GUARDを使用するための同期と相互除外。 3)条件変数は、std :: condition_variableを介したスレッド間の通信と同期を実現します。 4)スレッドプールの例は、スレッドプールクラスを使用してタスクを並行して処理して効率を向上させる方法を示しています。 5)非同期プログラミングはSTD :: ASを使用します

Cディープダイブ:メモリ管理、ポインター、およびテンプレートの習得Cディープダイブ:メモリ管理、ポインター、およびテンプレートの習得Apr 07, 2025 am 12:11 AM

Cのメモリ管理、ポインター、テンプレートはコア機能です。 1。メモリ管理は、新規および削除を通じてメモリを手動で割り当ててリリースし、ヒープとスタックの違いに注意を払います。 2。ポインターにより、メモリアドレスを直接操作し、注意して使用します。スマートポインターは管理を簡素化できます。 3.テンプレートは、一般的なプログラミングを実装し、コードの再利用性と柔軟性を向上させ、タイプの派生と専門化を理解する必要があります。

Cおよびシステムプログラミング:低レベルのコントロールとハードウェアの相互作用Cおよびシステムプログラミング:低レベルのコントロールとハードウェアの相互作用Apr 06, 2025 am 12:06 AM

Cは、ハードウェアに近い制御機能とオブジェクト指向プログラミングの強力な機能を提供するため、システムプログラミングとハードウェアの相互作用に適しています。 1)cポインター、メモリ管理、ビット操作などの低レベルの機能、効率的なシステムレベル操作を実現できます。 2)ハードウェアの相互作用はデバイスドライバーを介して実装され、Cはこれらのドライバーを書き込み、ハードウェアデバイスとの通信を処理できます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール