現在の人工知能の世界は、大量の電力を必要とし、計算能力に限界があります。モデル開発の軌跡は急速ですが、この進歩に伴い、コンピューティング能力の大幅な向上が必要になります。既存のトランジスタベースのコンピューティングは物理的な限界に近づいており、増大するコンピューティング需要を満たすのにすでに苦労しています。
大企業は、独自のカスタム チップ ソリューションを開発することで、この問題の解決を試みてきました。ただし、ハードウェアのボトルネックが深刻すぎて、従来の電子プロセッサでは克服できない場合があります。では、テクノロジーはコンピューティング能力に対する需要の急激な増加にどのように適切に対応できるのでしょうか?
行列乗算
大規模な言語モデルでは、コンピューティング タスクの 90% 以上で行列乗算が使用されます。行列乗算は、乗算と加算の基本演算を構造化された方法で実行することで、人工知能のさまざまな機能モジュールをサポートできます。これは言語モデルに当てはまるだけでなく、ほぼすべてのニューラル ネットワークの基礎でもあります。大規模なニューロン間の接続を実現し、画像分類やオブジェクト検出のための畳み込み演算を実行し、連続データを処理することができます。これは単純な概念ではありますが、人工知能やその他の無数のアプリケーションをサポートするデータを効率的に操作および変換することが重要であるため、人工知能モデルとして行列乗算の重要性を過大評価することはできません。行列がますます大きくなるにつれて、より多くの処理を実行する必要があります。つまり、より強力な計算能力が必要になります。この需要に応えるためには、今でもエレクトロニクス製品は限界に達しています。他に解決策はありますか?
光マトリックスの乗算
光は、私たちの生活を変えるさまざまな方法で使用されてきましたが、特に光ファイバー ネットワークでの光通信がその例です。光コンピューティングは当然の次のステップです。デジタル エレクトロニクスでは最も単純な算術演算を実行するために多数のトランジスタが必要ですが、オプティカル コンピューティングでは物理法則を利用して計算を実行します。入力情報は光ビームにエンコードされ、干渉や回折などの光学の自然な特性を使用して行列の乗算が実行されます。情報は複数の波長、偏光、空間モードでエンコードできるため、実質的に光の速度で無制限に並列処理や計算を行うことができます。
3D 光学による新しい次元の追加
デナード スケーリングとムーアの法則が終わりに近づいている今、コンピューティングの基本を再検討する時期が来ています。デジタル エレクトロニクスは本質的に「2D」レイアウトに限定されています。トランジスタのゲートと回路はウエハー上に製造され、計算は 2D 平面上の異なるユニット間の情報の流れによって実行されます。この 2D コンピューティング アーキテクチャでは、増加し続けるトランジスタ密度が必要であり、深刻な相互接続の問題が発生し、悪名高いメモリ ボトルネックに悩まされています。 3D スタック メモリの開発により、2D 設計の変革が始まりましたが、業界全体が適応するにはまだ長い道のりがあります。
さて、光学は 3D 空間で自然に計算を実行することでゲームに革命を起こすことができます。新しいディメンションを追加すると、従来のコンピューティングの制限の多くが緩和されます。コンポーネントの相互接続が容易になり、エネルギー効率が向上し、レイテンシー (各計算の実行速度) を損なうことなく、スループット (一定時間内に実行できる計算数) を常に向上させることができます。これは 3D 光学系にまったく特有のものです。10 の数値を乗算する場合でも、10,000 の数値を乗算する場合でも、すべてが光の速度で同時に起こります。これは光プロセッサの拡張性に大きな影響を与え、現在のデジタル プロセッサの 1,000 倍の速度に達することが可能になります。
3D 光学系の固有のスケーラビリティに加えて、光学系のクロック速度により従来の電子機器よりも最大 100 倍の速度を実現でき、波長を多重化できるため、最大 100 倍のさらなる改善への扉が開きます。回。これらすべてを組み合わせることで、3D 光学行列乗算だけが提供できる、より高いスループット、より低いレイテンシ、および信頼性の向上により、コンピューティング速度を飛躍的に拡張することが可能になります。
これは人工知能にとって何を意味しますか?
アプリケーションに関係なく, 行列の乗算は、すべての人工知能の計算のバックボーンを形成します。特に、3D 光学によってもたらされる高スループットと低遅延は、リアルタイムの応答性と効率性を重視するアプリケーションであるデータセンターでの人工知能推論タスクにとって特に価値があります。
3D オプティカル コンピューティングは、従来のエレクトロニクスや統合フォトニクスと比較して、帯域幅、遅延、速度、拡張性が大幅に向上します。さらに、既存の機械学習アルゴリズムと互換性があるため、すべての人工知能アプリケーションに革命をもたらす可能性があります
以上が人工知能の未来: 光行列乗算の革命的影響の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

この記事では、テキストデータを分析するための自然言語処理(NLP)の重要なツールである周波数逆文書頻度(TF-IDF)手法について説明します。 TF-IDFは、TEを重み付けすることにより、基本的なワードバッグアプローチの限界を上回ります

LangchainでAIエージェントの力を解き放つ:初心者向けガイド 祖母にchatgptとチャットすることで人工知能の不思議を示すことを想像してみてください。 th

ミストラル大規模2:ミストラルAIの強力なオープンソースLLMに深く飛び込む メタAIの最近のラマ3.1ファミリーのモデルのリリースに続いて、これまでの最大のモデルのミストラルAIの発表がすぐに続きました。

拡散モデルのノイズスケジュールの理解:包括的なガイド AIによって生み出されたデジタルアートの見事なビジュアルに魅了されたことがあり、基礎となるメカニズムについて疑問に思ったことはありますか? 重要な要素は、「ノイズスケジュール、&Quo

GPT-4Oでコンテキストチャットボットを構築する:包括的なガイド AIとNLPの急速に進化する風景では、チャットボットは開発者と組織にとって不可欠なツールになりました。 本当に魅力的でインテリジェントなチャットを作成する重要な側面

この記事では、AIエージェントを構築するための7つの主要なフレームワーク、つまり目標を達成するために知覚、決定、行動する自律的なソフトウェアエンティティについて説明します。 これらのエージェントは、従来の補強学習を上回り、高度な計画と理想を活用します

統計的仮説検定におけるタイプIおよびタイプIIエラーの理解 新しい血圧薬をテストする臨床試験を想像してください。 この試験では、この薬は血圧を大幅に低下させると結論付けていますが、実際にはそうではありません。これはタイプです

Sumy:AIを搭載した要約アシスタント 無限の文書をふるいにかけるのにうんざりしていませんか? 強力なPythonライブラリであるSumyは、自動テキストの要約のための合理化されたソリューションを提供します。 この記事では、Sumyの能力を調べて、あなたを導きます


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 中国語版
中国語版、とても使いやすい

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール
