検索
ホームページバックエンド開発Python チュートリアルChatGPT Python API 使用ガイド: 自然言語処理機能を迅速に統合する

ChatGPT Python API使用指南:快速集成自然语言处理能力

ChatGPT は、最近最も人気のある自然言語処理テクノロジの 1 つです。 OpenAI Labs の最新の GPT-3 モデルに基づいており、強力な自然言語処理機能を備えています。自然言語処理に関するプロジェクトを開発している場合、ChatGPT は非常に便利な API サービスになります。この記事では、ChatGPT Python API をプロジェクトに統合する方法を紹介し、ChatGPT の使用を開始するのに役立つサンプル コードを提供します。

ChatGPT Python APIをインストールする

まず、公式Webサイトからアカウントを登録し、割り当てられたAPIキーを記録する必要があります。このキーを使用して、ChatGPT を含むすべての API サービスにアクセスできます。次に、Python と pip パッケージ マネージャーをまだインストールしていない場合はインストールする必要があります。

ChatGPT Python API のインストールは非常に簡単です。ターミナルで次のコマンドを実行するだけです:

pip install openai

これにより、必要な依存関係がダウンロードおよびインストールされ、インストーラーが完了します。

API 接続のテスト

API がインストールされたら、API サービスとの接続を確立できるかどうかを確認する必要があります。これを行うには、Python コードで API キーを設定し、基本的なサンプル コードを実行する必要があります。

import openai
openai.api_key = "YOUR_SECRET_API_KEY"
response = openai.Completion.create(
  engine="davinci", # 推荐使用该引擎,因为它是最强大的
  prompt="Hello, my name is",
  max_tokens=5
)
print(response.choices[0].text)

上記のコードは語句を返します。これは、API が正常に接続できることを示します。 ChatGPT の自然言語処理機能をさらに深く活用できるようになりました。

ChatGPT を使用した会話

ChatGPT を使用すると、生成されたテキストを使用して人々間の会話をシミュレートできます。人間の会話と同じように、回答、コメント、提案を生成できます。会話をシミュレートするには、短いテキスト スニペットをプロンプトとして提供する必要があります。ChatGPT はそれを使用して応答を生成します。基本的なコード テンプレートは次のとおりです。

import openai
openai.api_key = "YOUR_SECRET_API_KEY"

user_prompt = input("User says: ")
chat_log = ""

while True:
    #  发送用户的提示聊天
    prompt = (chat_log + 'User: ' + user_prompt + '
AI:')
    # 定义机器人回复的长度
    response = openai.Completion.create(
        engine="davinci",
        prompt=prompt,
        max_tokens=50,
        n=1,
        stop=None,
        temperature=0.5,
    )

    # 提取机器人回复,并将其添加到聊天日志
    message = response.choices[0].text.strip()
    chat_log = prompt + message + "
"
    # 显示机器人回复和等待用户再次输入
    print("AI:", message)
    user_prompt = input("User says: ")

上記のコードは、ユーザーが入力したプロンプトを使用して、ボットとの完全な会話をシミュレートします。このコード スニペットでは、完全な会話をシミュレートするために while ループを追加しました。ボットは ChatGPT を使用して回答を生成し、ログに追加します。その後、ボットは回答を出力し、ユーザーが再度プロンプトを入力するのを待ちます。このループは、ユーザーが「bye」または「goodbye」を入力するまで実行されます。このテンプレート コードは、トークンの最大数、ロボットの温度、ストップ ワード、その他のパラメーターを変更することで応答を微調整できることに注意してください。

ChatGPT を他の自然言語処理タスクに使用する

ChatGPT は、会話だけでなく、言語翻訳、テキスト分類、名詞解釈など、他の多くの自然言語処理タスクにも使用できます。要約など以下は、テキストを指定した言語に翻訳するサンプル コードです。

import openai
openai.api_key = "YOUR_SECRET_API_KEY"
translation = "Hello, how are you doing today?"
response = openai.Completion.create(
    engine="davinci",
    prompt=f"Translate from English to Spanish: {translation}",
    max_tokens=100,
    n=1,
    stop=None,
    temperature=0.5,
)
print(response.choices[0].text)

上記のコードは、単純な翻訳タスクを実行します。 print ステートメントを使用して応答を端末に出力します。

結論:

この記事では、ChatGPT Python API に基づいた実用的なコード例をいくつか紹介しました。これらの例は、ChatGPT テクノロジを自然言語処理プロジェクトに迅速に統合し、開発効率を向上させ、時間を節約するのに役立ちます。 ChatGPT は非常に強力な自然言語処理機能を提供しており、開発者がより優れた自然言語処理アプリケーションを構築するのに役立ちます。

以上がChatGPT Python API 使用ガイド: 自然言語処理機能を迅速に統合するの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python:自動化、スクリプト、およびタスク管理Python:自動化、スクリプト、およびタスク管理Apr 16, 2025 am 12:14 AM

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)