検索
ホームページバックエンド開発Python チュートリアルChatGPT と Python の組み合わせ: インテリジェントな Q&A チャットボットの構築

ChatGPT と Python の組み合わせ: インテリジェントな Q&A チャットボットの構築

Oct 26, 2023 pm 12:19 PM
pythonchatgptインテリジェントな Q&A チャットボット

ChatGPT と Python の組み合わせ: インテリジェントな Q&A チャットボットの構築

ChatGPT と Python の組み合わせ: インテリジェントな質問と回答のチャットボットの構築

はじめに:
人工知能テクノロジーの継続的な発展により、チャットボットは人々のものになりました。日常生活は不可欠な部分です。 ChatGPT は、OpenAI によって開発された高度な自然言語処理モデルで、スムーズで状況に応じたテキスト応答を生成します。強力なプログラミング言語である Python を使用して、チャットボットのバックエンド コードを作成し、ChatGPT と統合できます。この記事では、Python と ChatGPT を使用してインテリジェントな質問と回答のチャットボットを構築する方法を紹介し、具体的なコード例を示します。

1. 必要なライブラリをインストールして構成する
まず、OpenAI の GPT モデル ライブラリや自然言語ツールキット NLTK など、Python の関連ライブラリをインストールする必要があります。 pip コマンドを使用してインストールできます。

pip install openai nltk

インストールが完了したら、NLTK に必要なリソースをダウンロードする必要もあります。 Python インタラクティブ環境で次のコードを実行します:

import nltk
nltk.download('punkt')

2. ChatGPT モデルを準備する
OpenAI は、ダウンロードして直接使用できる事前トレーニング済みの ChatGPT モデルを提供します。まずはOpenAIのWebサイトにアカウントを登録し、APIキーを取得します。次に、次のコードを使用してキーを環境変数に保存します。

import os

os.environ["OPENAI_API_KEY"] = "your_api_key"

次に、OpenAI が提供する Python SDK を使用して ChatGPT モデルを呼び出すことができます。サンプル コードは次のとおりです。

import openai

response = openai.ChatCompletion.create(
  model="gpt-3.5-turbo",
  messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Who won the world series in 2020?"},
        {"role": "assistant", "content": "The Los Angeles Dodgers won the World Series in 2020."},
        {"role": "user", "content": "Where was it played?"}
    ]
)

answer = response['choices'][0]['message']['content']
print(answer)

この例では、質問と回答をモデルに送信し、モデルが応答を生成するのを待ちます。最後に、応答から最良の回答を抽出して出力します。

3. チャットボットのバックエンド コードの構築
上記は単なる例であり、Python の Flask フレームワークと組み合わせて、完全な Q&A チャットボットを構築できます。まず、Flask ライブラリをインストールする必要があります:

pip install flask

次に、「app.py」という名前の Python ファイルを作成し、次のコードを記述します:

from flask import Flask, render_template, request
import openai

app = Flask(__name__)

@app.route("/")
def home():
    return render_template("home.html")

@app.route("/get_response", methods=["POST"])
def get_response():
    user_message = request.form["user_message"]
    chat_history = session["chat_history"]

    chat_history.append({"role": "user", "content": user_message})

    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=chat_history
    )

    assistant_message = response['choices'][0]['message']['content']
    chat_history.append({"role": "assistant", "content": assistant_message})

    session["chat_history"] = chat_history

    return {"message": assistant_message}


if __name__ == "__main__":
    app.secret_key = 'supersecretkey'
    app.run(debug=True)

上記のコードは、 Flask フレームワーク シンプルな Web アプリケーション。ユーザーがメッセージを送信すると、アプリケーションは ChatGPT モデルにリクエストを送信し、モデルによって生成された応答を返します。このようにして、ブラウザを通じてチャットボットと対話できます。

結論:
この記事では、Python と ChatGPT を使用してインテリジェントな Q&A チャットボットを構築する方法の基本手順を説明し、コンテキスト付きのコード例を示します。 PythonとChatGPTを組み合わせることで、スムーズに会話や質問に回答できるチャットボットを作成できます。今後、人工知能技術の進歩に伴い、チャットボットは顧客サービスや語学学習など、さまざまな分野で活躍することになるでしょう。

以上がChatGPT と Python の組み合わせ: インテリジェントな Q&A チャットボットの構築の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Pythonアレイで実行できる一般的な操作は何ですか?Pythonアレイで実行できる一般的な操作は何ですか?Apr 26, 2025 am 12:22 AM

PythonArraysSupportVariousoperations:1)SlicingExtractsSubsets、2)Appending/ExtendingAdddesements、3)inSertingSelementSatspecificpositions、4)remvingingDeletesements、5)sorting/verversingsorder、and6)listenionsionsionsionsionscreatenewlistsebasedexistin

一般的に使用されているnumpy配列はどのようなアプリケーションにありますか?一般的に使用されているnumpy配列はどのようなアプリケーションにありますか?Apr 26, 2025 am 12:13 AM

numpyarraysAressertialentionsionceivationsefirication-efficientnumericalcomputations andDatamanipulation.theyarecrucialindatascience、mashineelearning、物理学、エンジニアリング、および促進可能性への適用性、scaledatiencyを効率的に、forexample、infinancialanalyyy

Pythonのリスト上の配列を使用するのはいつですか?Pythonのリスト上の配列を使用するのはいつですか?Apr 26, 2025 am 12:12 AM

UseanArray.ArrayOverAlistinPythonは、Performance-criticalCode.1)homogeneousdata:araysavememorywithpedelements.2)Performance-criticalcode:Araysofterbetterbetterfornumerumerumericaleperations.3)interf

すべてのリスト操作は配列でサポートされていますか?なぜまたはなぜですか?すべてのリスト操作は配列でサポートされていますか?なぜまたはなぜですか?Apr 26, 2025 am 12:05 AM

いいえ、notallistoperationSaresuptedbyarrays、andviceversa.1)arraysdonotsupportdynamicoperationslikeappendorintorintorinsertizizing、whosimpactsporformance.2)リスト

Pythonリストの要素にどのようにアクセスしますか?Pythonリストの要素にどのようにアクセスしますか?Apr 26, 2025 am 12:03 AM

toaccesselementsinapythonlist、useindexing、negativeindexing、slicing、oriteration.1)indexingstartsat0.2)negativeindexingAcsesess.3)slicingextractStions.4)reterationSuseSuseSuseSuseSeSeS forLoopseCheckLentlentlentlentlentlentlenttodExeror。

Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Pythonを使用した科学コンピューティングでアレイはどのように使用されていますか?Apr 25, 2025 am 12:28 AM

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

同じシステムで異なるPythonバージョンをどのように処理しますか?同じシステムで異なるPythonバージョンをどのように処理しますか?Apr 25, 2025 am 12:24 AM

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?標準のPythonアレイでnumpyアレイを使用することの利点は何ですか?Apr 25, 2025 am 12:21 AM

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、