検索
ホームページJava&#&チュートリアルChatGPT Java: 記事から重要な情報を自動的に要約して抽出する方法

ChatGPT Java: 記事から重要な情報を自動的に要約して抽出する方法

Oct 26, 2023 am 10:26 AM
Javaプログラミング要約生成(自動要約)記事キー情報抽出(情報抽出)

ChatGPT Java:如何实现自动摘要和提取文章关键信息

ChatGPT Java: 記事からの重要な情報の自動要約と抽出を実装する方法、具体的なコード例が必要です

要約と重要な情報の抽出は情報検索において非常に重要ですおよびテキスト処理タスク。 Java で自動要約を実装し、記事の重要な情報を抽出するには、自然言語処理 (NLP) ライブラリと関連アルゴリズムを使用できます。この記事では、Lucene と Stanford CoreNLP を使用してこれらの機能を実装する方法と、具体的なコード例を紹介します。

1. 自動要約
自動要約は、テキストから重要な文や語句を抽出して、テキストの簡潔な要約を生成します。 Java では、Lucene ライブラリを使用して自動集計機能を実装できます。以下は簡単なサンプル コードです。

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.document.TextField;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.RAMDirectory;

public class Summarizer {
    public static String summarize(String text, int numSentences) throws Exception {
        // 创建索引
        Directory directory = new RAMDirectory();
        Analyzer analyzer = new StandardAnalyzer();
        IndexWriterConfig config = new IndexWriterConfig(analyzer);
        IndexWriter writer = new IndexWriter(directory, config);
        
        // 创建文档
        Document doc = new Document();
        doc.add(new TextField("text", text, Field.Store.YES));
        writer.addDocument(doc);
        writer.close();
        
        // 搜索并获取摘要
        IndexSearcher searcher = new IndexSearcher(directory);
        TopDocs topDocs = searcher.search(query, numSentences);
        StringBuilder summary = new StringBuilder();
        for (ScoreDoc scoreDoc : topDocs.scoreDocs) {
            Document summaryDoc = searcher.doc(scoreDoc.doc);
            summary.append(summaryDoc.get("text")).append(" ");
        }
        
        searcher.getIndexReader().close();
        directory.close();
        
        return summary.toString();
    }
}

上記のコードでは、Lucene ライブラリを使用してメモリ インデックスと検索結果を作成し、関連する文を要約として抽出します。

2. 記事の重要な情報を抽出する
重要な情報の抽出とは、本文から最も代表的かつ重要なキーワードや語句を抽出することを指します。 Java では、Stanford CoreNLP ライブラリを使用してこの機能を実装できます。以下は簡単なサンプル コードです。

import edu.stanford.nlp.simple.*;

public class KeywordExtractor {
    public static List<String> extractKeywords(String text, int numKeywords) {
        List<String> keywords = new ArrayList<>();
        Document document = new Document(text);
        
        // 提取名词关键词
        for (Sentence sentence : document.sentences()) {
            for (String word : sentence.words()) {
                if (sentence.posTag(word).startsWith("NN")) {
                    keywords.add(word);
                }
            }
        }
        
        // 统计关键词频率
        Map<String, Integer> freqMap = new HashMap<>();
        for (String keyword : keywords) {
            freqMap.put(keyword, freqMap.getOrDefault(keyword, 0) + 1);
        }
        
        // 按照频率排序
        List<Map.Entry<String, Integer>> sortedList = new ArrayList<>(freqMap.entrySet());
        sortedList.sort(Map.Entry.comparingByValue(Comparator.reverseOrder()));
        
        // 返回前 numKeywords 个关键词
        List<String> topKeywords = new ArrayList<>();
        for (int i = 0; i < Math.min(numKeywords, sortedList.size()); i++) {
            topKeywords.add(sortedList.get(i).getKey());
        }
        
        return topKeywords;
    }
}

上記のコードでは、Stanford CoreNLP ライブラリを使用してテキスト内の名詞キーワードを抽出し、頻度統計とランキングを使用して最も代表的なキーワードを取得します。

3. 概要
この記事では、Java を使用して自動概要を実装し、記事の重要な情報を抽出する方法を紹介します。 Lucene および Stanford CoreNLP ライブラリと関連アルゴリズムを使用することで、これらの機能をより簡単に実装できます。これらのコード例が、これらのタスクの理解と実践に役立つことを願っています。

以上がChatGPT Java: 記事から重要な情報を自動的に要約して抽出する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか?高度なJavaプロジェクト管理、自動化の構築、依存関係の解像度にMavenまたはGradleを使用するにはどうすればよいですか?Mar 17, 2025 pm 05:46 PM

この記事では、Javaプロジェクト管理、自動化の構築、依存関係の解像度にMavenとGradleを使用して、アプローチと最適化戦略を比較して説明します。

適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか?適切なバージョン化と依存関係管理を備えたカスタムJavaライブラリ(JARファイル)を作成および使用するにはどうすればよいですか?Mar 17, 2025 pm 05:45 PM

この記事では、MavenやGradleなどのツールを使用して、適切なバージョン化と依存関係管理を使用して、カスタムJavaライブラリ(JARファイル)の作成と使用について説明します。

カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか?カフェインやグアバキャッシュなどのライブラリを使用して、Javaアプリケーションにマルチレベルキャッシュを実装するにはどうすればよいですか?Mar 17, 2025 pm 05:44 PM

この記事では、カフェインとグアバキャッシュを使用してJavaでマルチレベルキャッシュを実装してアプリケーションのパフォーマンスを向上させています。セットアップ、統合、パフォーマンスの利点をカバーし、構成と立ち退きポリシー管理Best Pra

キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか?キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPA(Java Persistence API)を使用するにはどうすればよいですか?Mar 17, 2025 pm 05:43 PM

この記事では、キャッシュや怠zyなロードなどの高度な機能を備えたオブジェクトリレーショナルマッピングにJPAを使用することについて説明します。潜在的な落とし穴を強調しながら、パフォーマンスを最適化するためのセットアップ、エンティティマッピング、およびベストプラクティスをカバーしています。[159文字]

Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか?Javaのクラスロードメカニズムは、さまざまなクラスローダーやその委任モデルを含むどのように機能しますか?Mar 17, 2025 pm 05:35 PM

Javaのクラスロードには、ブートストラップ、拡張機能、およびアプリケーションクラスローダーを備えた階層システムを使用して、クラスの読み込み、リンク、および初期化が含まれます。親の委任モデルは、コアクラスが最初にロードされ、カスタムクラスのLOAに影響を与えることを保証します

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境