Python でデータの視覚化と探索を実行する方法
データの視覚化と探索は、データ分析の重要な側面の 1 つです。Python では、さまざまな強力な機能の助けを借りて、ライブラリとツールを使用すると、データを簡単に視覚化して探索できます。この記事では、Python で一般的に使用されるデータ視覚化ライブラリとテクニックを紹介し、具体的なコード例を示します。
まず、データ処理と分析のために pandas ライブラリをインストールする必要があります。次に、次のコードを使用して Iris データ セットを読み取り、簡単なデータ視覚化の準備をします。
import pandas as pd
iris_data = pd。 read_csv ('iris.csv')
print(iris_data.head())
print(iris_data.info())
がく片の長さ (がくの長さ) を例として、Matplotlib ライブラリを使用してヒストグラムを描画するコード例は次のとおりです。
import matplotlib.pyplot as plt
plt.bar(iris_data['Species'], iris_data['Sepal length'])
plt.xlabel('Species') # X 軸を設定するlabel
plt.ylabel(' セパルの長さ') # y 軸のラベルを設定します
plt.title('セパルの長さの分布') # グラフのタイトルを設定します
plt.show()
さらに、Seaborn ライブラリを使用して、ヒストグラムの図や箱ひげ図を描画することもできます。以下は、ヒストグラムを描画するコード例です。
import seaborn as sns
sns.histplot(data=iris_data, x='Sepal length' , kde =True)
plt.xlabel('Sepal length') # x 軸のラベルを設定します
plt.ylabel('Count') # y 軸のラベルを設定します
plt.title('セパルの長さの分布') #Set chart title
plt.show()
萼片の長さと花弁の長さを例として、Matplotlib ライブラリを使用して散布図を描画するコード例は次のとおりです。
plt.scatter( iris_data['がく片の長さ'], iris_data['花びらの長さ'])
plt.xlabel('がく片の長さ') # x 軸のラベルを設定します
plt.ylabel('花びらlength') # y 軸のラベルを設定します
plt.title('セパルの長さと花弁の長さの関係') # グラフのタイトルを設定します
plt.show()
さらに、 Seaborn ライブラリを使用してヒート マップを描画し、変数間の相関関係を示すこともできます。以下は、ヒート マップを描画するコード例です。
correlation_matrix = iris_data[['がく片の長さ', 'がく片の幅', '花弁の長さ' , ' 花びらの幅']].corr()
sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm')
plt.title( 'Correlation Matrix ')
plt.show()
アイリス データ セットの 4 つの特徴を例として、Seaborn ライブラリを使用して散布行列を描画するコード例は次のとおりです。
sns.pairplot(iris_data, hue='Species')
plt.show()
さらに、Plotly ライブラリを使用して平行座標プロットを描画することもできます。以下は、平行座標プロットを描画するためのコード例です。
import plotly.express as px
fig = px.Parallel_coodys(iris_data, color=') Species')
fig.show()
まとめ
この記事では、Python でのデータの視覚化と探索の方法を紹介し、具体的なコード例を示します。データの視覚化と探索を通じて、データの分布、関係、特性をより深く理解できるようになり、その後のデータ分析とモデリングのための基盤と指針が提供されます。実際のアプリケーションでは、データの価値をさらに探求するために、特定のニーズとデータ特性に基づいて適切な視覚化方法とテクノロジーを選択することもできます。
以上がPython でデータの視覚化と探索を行う方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。