Python で並列コンピューティングと分散コンピューティングを実行する方法
コンピューター技術の継続的な開発とハードウェアのパフォーマンスの向上に伴い、並列コンピューティングにはマルチコア プロセッサーが使用されます。コンピューティングと分散コンピューティングは、プログラムのパフォーマンスを向上させる重要な手段の 1 つとなっています。 Python は、シンプルで使いやすく強力なプログラミング言語として、並列コンピューティングと分散コンピューティングをサポートする豊富なライブラリとツールも提供します。
この記事では、Python で並列コンピューティングと分散コンピューティングを実行する方法と、具体的なコード例を紹介します。
1. 並列コンピューティング
Python での並列コンピューティングの一般的な方法は、マルチスレッドまたはマルチプロセスを使用することです。以下は、Python の組み込み threading
ライブラリと multiprocessing
ライブラリを使用した並列コンピューティングのサンプル コードです。
- 並列計算には
threading
を使用します
import threading def calculate_square(numbers): for num in numbers: print(f"Square of {num} is {num*num}") if __name__ == '__main__': numbers = [1, 2, 3, 4, 5] threads = [] for i in range(5): t = threading.Thread(target=calculate_square, args=(numbers,)) threads.append(t) t.start() for t in threads: t.join()
上記のコードでは、数値を計算するための calculate_square
関数を定義します。 Square を作成し、threading.Thread
を使用して複数のスレッドを作成し、計算タスクを並行して実行します。最後に、join
関数を使用して、すべてのスレッドが計算を完了するのを待ちます。
- 並列コンピューティングには
multiprocessing
を使用します
import multiprocessing def calculate_square(numbers): for num in numbers: print(f"Square of {num} is {num*num}") if __name__ == '__main__': numbers = [1, 2, 3, 4, 5] processes = [] for i in range(5): p = multiprocessing.Process(target=calculate_square, args=(numbers,)) processes.append(p) p.start() for p in processes: p.join()
上記のコードでは、multiprocessing.Process
を使用して複数のプロセスを作成しますコンピューティングタスクを並行して実行します。最後に、join
関数を使用して、すべてのプロセスが計算を完了するのを待ちます。
2. 分散コンピューティング
並列コンピューティングにマルチスレッドまたはマルチプロセスを使用することに加えて、Python は pySpark
や dask などのいくつかの分散コンピューティング フレームワークも提供します。
は、分散環境で大規模な並列コンピューティングを実行できます。
- 分散コンピューティングには
pySpark
を使用します
from pyspark import SparkContext def calculate_square(num): return num * num if __name__ == '__main__': sc = SparkContext() numbers = [1, 2, 3, 4, 5] rdd = sc.parallelize(numbers) squares = rdd.map(calculate_square).collect() for num, square in zip(numbers, squares): print(f"Square of {num} is {square}") sc.stop()
上記のコードでは、pyspark
ライブラリを使用して SparkContext
オブジェクトを作成し、Parallelize
関数を使用してデータを RDD (弾性分散データ セット) に並列化してから、map
関数を使用して、 RDD計算します。最後に、collect
関数を使用して計算結果を収集します。
- 分散コンピューティングには
dask
を使用します。
import dask @dask.delayed def calculate_square(num): return num * num if __name__ == '__main__': numbers = [1, 2, 3, 4, 5] results = [] for num in numbers: result = calculate_square(num) results.append(result) squared_results = dask.compute(*results) for num, square in zip(numbers, squared_results): print(f"Square of {num} is {square}")
上記のコードでは、dask.layed
関数を使用して、計算タスクは遅延計算オブジェクトとしてカプセル化され、dask.compute
関数を使用して計算タスクを実行します。最後に、zip
関数を使用して、入力データと計算結果を結合して出力します。
概要:
この記事では、Python で並列コンピューティングと分散コンピューティングを実行する方法を紹介し、具体的なコード例を示します。並列コンピューティングと分散コンピューティングを通じて、プログラムのパフォーマンスと効率を向上させることができます。これは、大規模なデータや複雑なコンピューティング タスクを処理する場合に特に重要です。読者は、実際のニーズに応じて、コンピューティング タスクを並列化および分散するための適切な方法とツールを選択できます。
以上がPython で並列および分散コンピューティングを行う方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

AlaySaregenerallymorememory-effictient forstring forstring inumericaldataduetotheirfixed-sizenature anddirectmoryaccess.1)AraysstoreElementsinaCourowlock、Reducingoverheadfrompointertersormetadata.2)リスト

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Pythonリストは、さまざまな種類のデータを保存できます。サンプルリストには、整数、文字列、フローティングポイント番号、ブール膜、ネストされたリスト、辞書が含まれています。リストの柔軟性は、データ処理とプロトタイピングにおいて価値がありますが、コードの読みやすさと保守性を確保するためには注意して使用する必要があります。

Pythondoesnothavebuiltinarays; usethearmoduleformemory-efficienthogeneousdatastorage、while-lelistSareversatileformixeddatypes.Arraysareeffientive for forlardatedateSetsetype、wheneasofferistofibuliestibuliestuseduseerieartusedoersorerdatatess。

sostCommonlylysedModule forcreatinginpythonisnumpy.1)numProvidesefficientToolsForArrayoperations、理想的なfornumericaldata.2)arrayscanbecreatedusingnp.array()for1dand2dstructures.3)

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

メモ帳++7.3.1
使いやすく無料のコードエディター

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。
