検索
ホームページバックエンド開発Python チュートリアルPython で並列および分散コンピューティングを行う方法

Python で並列および分散コンピューティングを行う方法

Oct 20, 2023 pm 04:33 PM
python (python)並列コンピューティング分散コンピューティング

Python で並列および分散コンピューティングを行う方法

Python で並列コンピューティングと分散コンピューティングを実行する方法

コンピューター技術の継続的な開発とハードウェアのパフォーマンスの向上に伴い、並列コンピューティングにはマルチコア プロセッサーが使用されます。コンピューティングと分散コンピューティングは、プログラムのパフォーマンスを向上させる重要な手段の 1 つとなっています。 Python は、シンプルで使いやすく強力なプログラミング言語として、並列コンピューティングと分散コンピューティングをサポートする豊富なライブラリとツールも提供します。

この記事では、Python で並列コンピューティングと分散コンピューティングを実行する方法と、具体的なコード例を紹介します。

1. 並列コンピューティング
Python での並列コンピューティングの一般的な方法は、マルチスレッドまたはマルチプロセスを使用することです。以下は、Python の組み込み threading ライブラリと multiprocessing ライブラリを使用した並列コンピューティングのサンプル コードです。

  1. 並列計算には threading を使用します
import threading

def calculate_square(numbers):
    for num in numbers:
        print(f"Square of {num} is {num*num}")

if __name__ == '__main__':
    numbers = [1, 2, 3, 4, 5]
    threads = []
    
    for i in range(5):
        t = threading.Thread(target=calculate_square, args=(numbers,))
        threads.append(t)
        t.start()

    for t in threads:
        t.join()

上記のコードでは、数値を計算するための calculate_square 関数を定義します。 Square を作成し、threading.Thread を使用して複数のスレッドを作成し、計算タスクを並行して実行します。最後に、join 関数を使用して、すべてのスレッドが計算を完了するのを待ちます。

  1. 並列コンピューティングには multiprocessing を使用します
import multiprocessing

def calculate_square(numbers):
    for num in numbers:
        print(f"Square of {num} is {num*num}")

if __name__ == '__main__':
    numbers = [1, 2, 3, 4, 5]
    processes = []
    
    for i in range(5):
        p = multiprocessing.Process(target=calculate_square, args=(numbers,))
        processes.append(p)
        p.start()

    for p in processes:
        p.join()

上記のコードでは、multiprocessing.Process を使用して複数のプロセスを作成しますコンピューティングタスクを並行して実行します。最後に、join 関数を使用して、すべてのプロセスが計算を完了するのを待ちます。

2. 分散コンピューティング
並列コンピューティングにマルチスレッドまたはマルチプロセスを使用することに加えて、Python は pySparkdask などのいくつかの分散コンピューティング フレームワークも提供します。 は、分散環境で大規模な並列コンピューティングを実行できます。

  1. 分散コンピューティングには pySpark を使用します
from pyspark import SparkContext

def calculate_square(num):
    return num * num

if __name__ == '__main__':
    sc = SparkContext()
    numbers = [1, 2, 3, 4, 5]
    rdd = sc.parallelize(numbers)
    
    squares = rdd.map(calculate_square).collect()
    for num, square in zip(numbers, squares):
        print(f"Square of {num} is {square}")

    sc.stop()

上記のコードでは、pyspark ライブラリを使用して SparkContext オブジェクトを作成し、Parallelize 関数を使用してデータを RDD (弾性分散データ セット) に並列化してから、map 関数を使用して、 RDD計算します。最後に、collect 関数を使用して計算結果を収集します。

  1. 分散コンピューティングには dask を使用します。
import dask

@dask.delayed
def calculate_square(num):
    return num * num

if __name__ == '__main__':
    numbers = [1, 2, 3, 4, 5]
    results = []

    for num in numbers:
        result = calculate_square(num)
        results.append(result)

    squared_results = dask.compute(*results)
    for num, square in zip(numbers, squared_results):
        print(f"Square of {num} is {square}")

上記のコードでは、dask.layed 関数を使用して、計算タスクは遅延計算オブジェクトとしてカプセル化され、dask.compute 関数を使用して計算タスクを実行します。最後に、zip関数を使用して、入力データと計算結果を結合して出力します。

概要:
この記事では、Python で並列コンピューティングと分散コンピューティングを実行する方法を紹介し、具体的なコード例を示します。並列コンピューティングと分散コンピューティングを通じて、プログラムのパフォーマンスと効率を向上させることができます。これは、大規模なデータや複雑なコンピューティング タスクを処理する場合に特に重要です。読者は、実際のニーズに応じて、コンピューティング タスクを並列化および分散するための適切な方法とツールを選択できます。

以上がPython で並列および分散コンピューティングを行う方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
数値データを保存するためのリストよりも一般的にメモリ効率が高いのはなぜですか?数値データを保存するためのリストよりも一般的にメモリ効率が高いのはなぜですか?May 05, 2025 am 12:15 AM

AlaySaregenerallymorememory-effictient forstring forstring inumericaldataduetotheirfixed-sizenature anddirectmoryaccess.1)AraysstoreElementsinaCourowlock、Reducingoverheadfrompointertersormetadata.2)リスト

PythonリストをPythonアレイに変換するにはどうすればよいですか?PythonリストをPythonアレイに変換するにはどうすればよいですか?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

同じPythonリストに異なるデータ型を保存できますか?例を挙げてください。同じPythonリストに異なるデータ型を保存できますか?例を挙げてください。May 05, 2025 am 12:10 AM

Pythonリストは、さまざまな種類のデータを保存できます。サンプルリストには、整数、文字列、フローティングポイント番号、ブール膜、ネストされたリスト、辞書が含まれています。リストの柔軟性は、データ処理とプロトタイピングにおいて価値がありますが、コードの読みやすさと保守性を確保するためには注意して使用する必要があります。

Pythonの配列とリストの違いは何ですか?Pythonの配列とリストの違いは何ですか?May 05, 2025 am 12:06 AM

Pythondoesnothavebuiltinarays; usethearmoduleformemory-efficienthogeneousdatastorage、while-lelistSareversatileformixeddatypes.Arraysareeffientive for forlardatedateSetsetype、wheneasofferistofibuliestibuliestuseduseerieartusedoersorerdatatess。

Pythonで配列を作成するために一般的に使用されるモジュールは何ですか?Pythonで配列を作成するために一般的に使用されるモジュールは何ですか?May 05, 2025 am 12:02 AM

sostCommonlylysedModule forcreatinginpythonisnumpy.1)numProvidesefficientToolsForArrayoperations、理想的なfornumericaldata.2)arrayscanbecreatedusingnp.array()for1dand2dstructures.3)

Pythonリストに要素をどのように追加しますか?Pythonリストに要素をどのように追加しますか?May 04, 2025 am 12:17 AM

toAppendElementStoapyThonList、usetheappend()methodforsingleelements、extend()formultipleElements、andinsert()forspecificopsitions.1)useappend()foraddingoneElementatheend.2)useextend()toaddmultipleelementseffictience.3)

Pythonリストをどのように作成しますか?例を挙げてください。Pythonリストをどのように作成しますか?例を挙げてください。May 04, 2025 am 12:16 AM

To CreateapythonList、usesquareBrackets []およびSeparateItemswithcommas.1)listsaredynamicandcanholdmixdatatypes.2)useappend()、remaid()、andslicingformanipulation.3)listcompreheNsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsionsientionforcreating.4)

数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。数値データの効率的なストレージと処理が重要な実際のユースケースについて話し合います。May 04, 2025 am 12:11 AM

金融、科学研究、医療、およびAIの分野では、数値データを効率的に保存および処理することが重要です。 1)財務では、メモリマッピングされたファイルとnumpyライブラリを使用すると、データ処理速度が大幅に向上する可能性があります。 2)科学研究の分野では、HDF5ファイルはデータストレージと取得用に最適化されています。 3)医療では、インデックス作成やパーティション化などのデータベース最適化テクノロジーがデータのパフォーマンスを向上させます。 4)AIでは、データシャーディングと分散トレーニングがモデルトレーニングを加速します。システムのパフォーマンスとスケーラビリティは、適切なツールとテクノロジーを選択し、ストレージと処理速度の間のトレードオフを検討することにより、大幅に改善できます。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。