検索
ホームページテクノロジー周辺機器AIGPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

現在、大規模言語モデル (LLM) は、特に例と中間ステップが提供されている場合に、推論タスクで驚くべき機能を実証しています。ただし、プロンプト メソッドは通常、LLM の暗黙的知識に依存します。暗黙的知識が間違っているか、タスクと矛盾している場合、LLM は間違った答えを返す可能性があります

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

##現在、Google、Mila Institute、その他の研究機関の研究者は、LLM に推論ルールを学習させるという新しい方法を共同で検討し、Hypotheses-to-Theories (HtT) という新しいフレームワークと呼ばれる方法を提案しました。この新しい方法は、複数ステップの推論を改善するだけでなく、解釈可能性と伝達可能性という利点もあります

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

論文アドレス: https://arxiv.org/abs/2310.07064

数値推論と関係推論の問題に関する実験結果によると、HtT 法は既存のプロンプト手法を改良し、精度が 11 向上しました。 -27%。同時に、学習したルールを別のモデルや同じ問題の別の形式に転送することもできます

方法の紹介

一般的にHtT フレームワークは帰納的段階と演繹的段階の 2 つの段階で構成されており、従来の機械学習におけるトレーニングとテストに似ていると述べました。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

導入フェーズでは、LLM はまずトレーニング サンプル用の一連のルールを生成して検証する必要があります。この研究では、CoT を使用してルールを宣言して答えを導き出し、ルールの頻度と精度を評価し、頻繁に出現して正解につながるルールを収集し、ルール ベースを形成します。

良いルールを使用してライブラリを使用している場合、次のステップは、問題を解決するためにこれらのルールを適用する方法を検討することです。この目的を達成するために、この研究では推論フェーズでプロンプトにルール ベースを追加し、LLM がルール ベースからルールを取得して推論を実行し、暗黙的な推論を明示的な推論に変換する必要があります。

ただし、研究によると、非常に強力な LLM (GPT-4 など) であっても、すべてのステップで正しいルールを取得するのは難しいことがわかっています。したがって、この研究では、LLM の文脈検索機能を強化する XML マークアップ技術を開発しました。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

#実験結果

HtT を評価するために、研究では 2 つのマルチステップ推論問題をベンチマークしました。実験結果は、HtT が少数サンプル プロンプト法を改善することを示しています。著者らは、HtT をより包括的に理解するために、広範なアブレーション研究も実施しました。

彼らは、数的推論と関係論的推論の問題に関する新しい方法を評価します。数値推論では、GPT-4 の精度が 21.0% 向上したことが観察されました。関係推論では、GPT-4 は精度で 13.7% の向上を達成し、GPT-3.5 ではさらに恩恵を受け、パフォーマンスが 2 倍になりました。パフォーマンスの向上は主に、ルールの錯覚の減少によってもたらされます。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

# 具体的には、以下の表 1 は、16 進数、11 進数、および 9 進数の算術結果を示しています。データセット。すべての基本システムの中で、両方の LLM で 0 ショット CoT のパフォーマンスが最も悪くなっています。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

#表 2 は、CLUTRR のさまざまな方法を比較した結果を示しています。 GPT3.5 と GPT4 では、0 ショット CoT のパフォーマンスが最も悪いことがわかります。少数ショット プロンプト方法の場合、CoT と LtM は同様に機能します。平均精度の点では、HtT は両方のモデルのヒンティング手法を常に 11.1 ~ 27.2% 上回っています。 GPT3.5 は CLUTRR ルールの取得が悪くなく、GPT4 よりも HtT の恩恵を受けやすいことは注目に値します。これはおそらく、CLUTRR のルールが算術演算よりも少ないためです。

GPT4 のルールを使用すると、GPT3.5 での CoT パフォーマンスが 27.2% 向上し、これは CoT パフォーマンスの 2 倍以上であり、CoT パフォーマンスに近いことに言及する価値があります。 GPT4で。したがって、著者らは、HtT が強力な LLM から弱い LLM への知識の蒸留の新しい形式として機能すると考えています。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

表 3 は、HtT が GPT-4 (テキスト バージョン) のパフォーマンスを大幅に向上させることを示しています。 GPT3.5 ではテキスト入力の処理時にルールの錯覚以外のエラーが発生することが多いため、この改善は重要ではありません。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。

GPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。#

以上がGPT-4 は、DeepMind トレーニングを通じて精度が 13.7% 向上し、帰納と演繹の能力が向上しました。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
高次元データの高度なベクトルインデックス手法高次元データの高度なベクトルインデックス手法Apr 11, 2025 am 10:16 AM

高次元ベクトル検索:高度なインデックス作成手法のマスタリング 今日のデータ駆動型の世界では、推奨システム、画像認識、自然言語処理(NLP)、異常などのアプリケーションに高次元ベクトルが重要です

Openai'のクリップVIT-L14を使用したゼロショット画像分類Openai'のクリップVIT-L14を使用したゼロショット画像分類Apr 11, 2025 am 10:04 AM

Openaiのクリップ(コントラスト言語 - イメージ前訓練)モデル、特にクリップVIT-L14バリアントは、マルチモーダル学習と自然言語処理の大幅な進歩を表しています。 この強力なコンピュータービジョンシステムは、RepreSeに優れています

コードなしでAIエージェントを構築するための7つのステップ-AnalyticsVidhyaコードなしでAIエージェントを構築するための7つのステップ-AnalyticsVidhyaApr 11, 2025 am 10:03 AM

Wordwareを使用してAIエージェントのパワーを活用してください:楽なAIエージェント作成のためのノーコードプラットフォーム。 AIエージェントは、コンピューターとの対話方法、タスクの自動化、意思決定の合理化に革命をもたらしています。 このブログは、構築方法を示しています

モバイルのLLMS:現在および将来の可能性 - 分析vidhyaモバイルのLLMS:現在および将来の可能性 - 分析vidhyaApr 11, 2025 am 09:58 AM

生成AI:次のスマートフォンの戦場 スマートフォン業界は、高度な生成AIを統合するための競争である激しい競争に閉じ込められています。 ユーザーの相互作用の向上から生産性の向上まで、利害関係は高いです。 AppleのiPhone16

2025年に続くトップ10の生成AIサブレッドディット - 分析vidhya2025年に続くトップ10の生成AIサブレッドディット - 分析vidhyaApr 11, 2025 am 09:51 AM

生成AI:10の必須redditコミュニティへのガイド 生成AIは急速に進化しており、新しいモデルが絶えず出現しています。 更新のままであることが重要であり、Redditはこの分野に特化した活気のあるコミュニティを提供しています。この記事はtを強調しています

AIモデルの重要な課題と制限 - 分析VidhyaAIモデルの重要な課題と制限 - 分析VidhyaApr 11, 2025 am 09:44 AM

導入 人工知能(AI)は、AIの研究開発への実質的な投資によって促進されたさまざまな職場に急速に統合されています。 AIのアプリケーションは、仮想アシスタントのような単純なタスクからcomまで、幅広い範囲に広がっています

SQLでnull値を処理しますSQLでnull値を処理しますApr 11, 2025 am 09:37 AM

導入 データベースの領域では、ヌル値はしばしば独自の課題を提示します。 欠落している、未定義、または未知のデータを表して、データ管理と分析を複雑にする可能性があります。顧客のフィードバックが欠落している販売データベースまたはORDEを検討してください

Google GeminiをTableau Dashboardsに統合する方法は?Google GeminiをTableau Dashboardsに統合する方法は?Apr 11, 2025 am 09:27 AM

TableauでGoogle Geminiのパワーを利用するダッシュボード:AI駆動の強化 Tableauの堅牢な視覚化機能、データ準備(Tableau Prep Builder)、データストーリーテリング(Tableau Desktop)、およびCollaborative共有(Table

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)