検索
ホームページテクノロジー周辺機器AI清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

このタイプのメモリスタストレージと計算の統合チップは、「スタックネック」の主要コアテクノロジーを克服するために積極的な重要性を持っています。

清華大学の公式微博は10月9日に重要な結果を発表しました。同校は、オンチップ学習をサポートする世界初の統合メモリメモリと計算チップの開発に成功しました

最近、清華大学の呉華強教授と何高斌准教授が発表しました。は、メモリスタストレージと計算統合チップの分野で大きな進歩を遂げました。彼らは、統合されたストレージと計算コンピューティングのパラダイムに基づいて、オンチップ学習をサポートするチップの開発に成功しました。この研究成果は、国際科学雑誌「サイエンス」の最新号に掲載されました

清華大学によると、記憶抵抗器(Memristor)は、抵抗、静電容量、インダクタンスに次ぐ4番目の基本回路部品です。電源を切った後も通過電荷を「記憶」できるため、新しいタイプのナノ電子シナプスデバイスになる可能性があります

2012年以来、清華大学のQian He氏とWu Huaqiang氏のチームはメモリスティブデバイスの開発に取り組んできました。プロトタイプチップからシステム統合まで、彼らは協力して重要な問題に取り組み、AIコンピューティングパワーのボトルネックの問題を徐々に解決しました

論文「エッジラーニング」完全に統合された神経にインスピレーションを得たメモリスタチップを使用する」は次のとおりです。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

論文を表示するには、次のリンクをクリックしてください: https://www.science.org/doi/full/10.1126/science.ade3483

研究概要とは、特定の研究に関する全体的な理解と概要を指します。研究分野。通常、この分野の歴史的背景、研究の目的、方法、結果についての簡単な紹介が含まれます。研究概要の目的は、読者がこの分野の基本的な状況をすぐに理解できるようにし、さらに詳細な研究の基礎を提供することです。研究概要は通常、研究論文、レポート、学術論文の一部であり、読者が研究内容を全体的に理解するのに役立ちます。研究の概要を読むことで、読者はこの分野における重要な研究の進歩と既存の知識のギャップについて知ることができ、それによって自分の研究に参考とインスピレーションを与えることができます

メモリスタベースのコンピューティング技術が最近大きな注目を集めていることを私たちは知っています。このテクノロジーには、従来のコンピューティング アーキテクチャのいわゆる「フォン ノイマン ボトルネック」を克服する可能性があります。メモリスタの特別な点は、完全なオンチップ学習の実装は依然として困難であるにもかかわらず、さまざまなエッジ インテリジェンス アプリケーションに対してリアルタイムでエネルギー効率の高いオンチップ学習を可能にできることです。

ニューロにヒントを得たメモリスタチップを使用したエッジ学習の概略図を以下に示します。図 1 は、人間の脳の学習能力を向上させる能力を示しています。図 2 は、メモリスタ ベースのニューロインスピレーション コンピューティング チップの設計と将来のアプリケーションを示しています。このチップは完全なオンチップ学習向けに設計されており、必要なすべてのモジュールをメモリスター アレイと統合しているため、エッジ AI デバイスは学習機能を備え、新しいシナリオに迅速に適応できます

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

関連する問題を解決するために、清華大学博士課程同大学集積回路学部の学生 Zhang Wenbin と博士研究員 Yao Peng は、Memristor Characteristic Symbol and Threshold Based Learning Architecture (STELLAR) と呼ばれるソリューションを提案し、完全なシステム統合チップの製造に成功しました。このチップには、複数のメモリスタ アレイと、完全なオンチップ学習をサポートするために必要なすべての相補型金属酸化膜半導体周辺回路が含まれています

下の図 2 は、オンチップ学習のためのメモリスタ機能アーキテクチャ設計を示しています。A は、で使用されるメモリスタ チップ STELLAR アーキテクチャです。 B と C は分類精度の比較、D は差動コンダクタンス ペア (左) と 1T1R (中央) および 2T2R (右) 構成の重み、E は周期的並列コンダクタンス調整スキームです。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

以下の図 3 は、オンチップ学習に使用されるメモリスタ チップを示しています。A はアーキテクチャの概要、B はチップの光学顕微鏡画像、C は 2T2R セルの断面透過型電子顕微鏡画像です。 。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

研究者らは、モーション制御、画像分類、音声認識などのさまざまなタスクに関するエンドツーエンドのオンチップ学習の改善を実証し、ソフトウェアのような精度とハードウェアコストの削減を実現しました。この研究は、インメモリ コンピューティングの分野における重要な一歩を示しています。

下の図 4 は、memristor チップを使用して学習を改善した例を示しています。 Aはモーションコントロールタスクとその制御システムを示し、Bは光を追う車の新しいサンプルの学習を示し、Fは画像分類タスクの新しいカテゴリの学習を示します

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

次のアニメーションのデモを見てみましょう。

まず、手書き数字の新しいカテゴリの学習タスクについて説明します

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

さらに、モーター制御の分野では学習を改善することができます。以下に示すように、学習を改善する前は、前方に走行している青い車がターゲットの赤い車を見逃す傾向がありました。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

学習して改善した後、前進する青い車はまず後退して調整し、最後に目標の赤い車に向かって前進を続けます

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

それだけでなく、明るいシーンでも学習が改善される前の場合、次のプロセスで青い車が目標の赤い車から逸脱することがよくありました。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

明るいシーンでの学習が改善された後、青い車はよく適応し、常にターゲットの赤い車を追跡します。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

学術論文の共同筆頭著者として、Zhang Wenbin と Yao Peng は博士課程の研究中に、半導体、マイクロエレクトロニクス、ソフトウェア アルゴリズム、脳からインスピレーションを得たコンピューティングなど、さまざまな方向での大量の科学研究の知識に触れました。 、実りある研究開発成果と豊富なエンジニアリング建設経験を蓄積しました。

清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載

研究チームは集合写真を撮りました。

参考レポート:

書き換えが必要な内容: https://mp.weixin.qq.com/s/w0VZNIQ1KbClJJ8c05hPqg

以上が清華大学が開発した世界初のオンチップ学習メモリスタ記憶・計算統合チップがサイエンス誌に掲載の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は机器之心で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
あなたは無知のベールの後ろに職場AIを構築する必要がありますあなたは無知のベールの後ろに職場AIを構築する必要がありますApr 29, 2025 am 11:15 AM

ジョン・ロールズの独創的な1971年の著書「正義の理論」で、彼は私たちが今日のAIデザインの核となり、意思決定を使用するべきであるという思考実験を提案しました:無知のベール。この哲学は、公平性を理解するための簡単なツールを提供し、リーダーがこの理解を使用してAIを公平に設計および実装するための青写真を提供します。 あなたが新しい社会のルールを作っていると想像してください。しかし、前提があります。この社会でどのような役割を果たすかは事前にわかりません。過半数または限界少数派に属している、金持ちまたは貧弱、健康、または障害者になることがあります。この「無知のベール」の下で活動することで、ルールメーカーが自分自身に利益をもたらす決定を下すことができません。それどころか、人々はより公衆を策定する意欲があります

決定、決定…実用的な応用AIの次のステップ決定、決定…実用的な応用AIの次のステップApr 29, 2025 am 11:14 AM

ロボットプロセスオートメーション(RPA)を専門とする多くの企業は、繰り返しタスクを自動化するためのボットを提供しています。 一方、プロセスマイニング、オーケストレーション、インテリジェントドキュメント処理スペシャル

エージェントが来ています - 私たちがAIパートナーの隣ですることについてもっとエージェントが来ています - 私たちがAIパートナーの隣ですることについてもっとApr 29, 2025 am 11:13 AM

AIの未来は、単純な単語の予測と会話シミュレーションを超えて動いています。 AIエージェントは出現しており、独立したアクションとタスクの完了が可能です。 このシフトは、AnthropicのClaudeのようなツールですでに明らかです。 AIエージェント:研究a

共感がAI主導の未来におけるリーダーのコントロールよりも重要である理由共感がAI主導の未来におけるリーダーのコントロールよりも重要である理由Apr 29, 2025 am 11:12 AM

急速な技術の進歩は、仕事の未来に関する将来の見通しの視点を必要とします。 AIが単なる生産性向上を超えて、私たちの社会構造の形成を開始するとどうなりますか? Topher McDougalの今後の本、Gaia Wakes:

製品分類のためのAI:マシンは税法を習得できますか?製品分類のためのAI:マシンは税法を習得できますか?Apr 29, 2025 am 11:11 AM

多くの場合、Harmonized System(HS)などのシステムからの「HS 8471.30」などの複雑なコードを含む製品分類は、国際貿易と国内販売に不可欠です。 これらのコードは、すべてのINVに影響を与える正しい税申請を保証します

データセンターの要求は、気候技術のリバウンドを引き起こす可能性がありますか?データセンターの要求は、気候技術のリバウンドを引き起こす可能性がありますか?Apr 29, 2025 am 11:10 AM

データセンターと気候技術投資におけるエネルギー消費の将来 この記事では、AIが推進するデータセンターのエネルギー消費の急増と気候変動への影響を調査し、この課題に対処するための革新的なソリューションと政策の推奨事項を分析します。 エネルギー需要の課題:大規模で超大規模なデータセンターは、数十万の普通の北米の家族の合計に匹敵する巨大な力を消費し、新たなAIの超大規模なセンターは、これよりも数十倍の力を消費します。 2024年の最初の8か月で、Microsoft、Meta、Google、Amazonは、AIデータセンターの建設と運用に約1,250億米ドルを投資しました(JP Morgan、2024)(表1)。 エネルギー需要の成長は、挑戦と機会の両方です。カナリアメディアによると、迫り来る電気

AIとハリウッドの次の黄金時代AIとハリウッドの次の黄金時代Apr 29, 2025 am 11:09 AM

生成AIは、映画とテレビの制作に革命をもたらしています。 LumaのRay 2モデル、滑走路のGen-4、OpenaiのSora、GoogleのVEO、その他の新しいモデルは、前例のない速度で生成されたビデオの品質を向上させています。これらのモデルは、複雑な特殊効果と現実的なシーンを簡単に作成できます。短いビデオクリップやカメラ認知モーション効果も達成されています。これらのツールの操作と一貫性を改善する必要がありますが、進歩の速度は驚くべきものです。 生成ビデオは独立した媒体になりつつあります。アニメーション制作が得意なモデルもあれば、実写画像が得意なモデルもあります。 AdobeのFireflyとMoonvalleyのMAであることは注目に値します

ChatGptはゆっくりとAIの最大のYES-MANになりますか?ChatGptはゆっくりとAIの最大のYES-MANになりますか?Apr 29, 2025 am 11:08 AM

ChatGptユーザーエクスペリエンスは低下します:それはモデルの劣化ですか、それともユーザーの期待ですか? 最近、多数のCHATGPT有料ユーザーがパフォーマンスの劣化について不満を述べています。 ユーザーは、モデルへの応答が遅く、答えが短い、助けの欠如、さらに多くの幻覚を報告しました。一部のユーザーは、ソーシャルメディアに不満を表明し、ChatGptは「お世辞になりすぎて」、重要なフィードバックを提供するのではなく、ユーザービューを検証する傾向があることを指摘しています。 これは、ユーザーエクスペリエンスに影響を与えるだけでなく、生産性の低下やコンピューティングリソースの無駄など、企業の顧客に実際の損失をもたらします。 パフォーマンスの劣化の証拠 多くのユーザーは、特にGPT-4などの古いモデル(今月末にサービスから廃止される)で、ChatGPTパフォーマンスの大幅な分解を報告しています。 これ

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

WebStorm Mac版

WebStorm Mac版

便利なJavaScript開発ツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール