検索
ホームページテクノロジー周辺機器AIインテリジェントアシスタントシステムにおけるユーザーの感情認識の問題

インテリジェントアシスタントシステムにおけるユーザーの感情認識の問題

Oct 09, 2023 am 08:57 AM
ユーザー感情認識スマートアシスタント

インテリジェントアシスタントシステムにおけるユーザーの感情認識の問題

インテリジェント アシスタント システムにおけるユーザーの感情認識の問題には特定のコード例が必要です

インテリジェント アシスタント システムは人工知能技術に基づくアプリケーションであり、その目的はユーザーに感情認識を提供することです。迅速かつ正確な情報サービスとインタラクティブなエクスペリエンスを提供します。近年、人工知能技術の急速な発展に伴い、インテリジェントアシスタントシステムの機能はますます豊富になり、初期の音声認識や音声合成から、現在の自然言語処理、感情認識などに至るまで、インテリジェントアシスタントシステムの機能はますます豊富になっています。ユーザーとシステムはますます複雑になり、インタラクションはよりインテリジェントで人間味のあるものになっています。

しかし、実際のアプリケーションでは、インテリジェント アシスタント システムはユーザーの感情認識において依然としていくつかの課題に直面しています。ユーザーの感情表現は多様かつ複雑で、怒り、喜び、悲しみなどさまざまな感情が含まれます。したがって、ユーザーの感情をいかに正確に把握するかが特に重要になります。以下では、自然言語処理に基づいたユーザー感情認識手法を紹介し、具体的なコード例を示します。

ユーザーの感情認識を実行する前に、まず感情辞書を作成する必要があります。感情辞書は、さまざまな感情単語とそれに対応する感情強度値を含む辞書です。手動で構築することも、機械学習手法を使用して構築することもできます。ここでは手動構築を例として、感情辞書に次の感情的な単語とその感情の強さの値が含まれていると仮定します:

emotion_dict = {
    'happy': 1.0,
    'sad': -1.0,
    'angry': -1.5,
    'excited': 1.5,
    'calm': 0.0
}

次に、ユーザーが入力したテキストに対して感情認識を実行する必要があります。一般的に使用される方法は、センチメント単語に基づくセンチメント加重合計法です。具体的な手順は以下の通りです。

  1. まず、ユーザーが入力したテキストに対して単語分割処理を行います。単語の分割は、テキストを小さな単語またはフレーズに分割するプロセスです。既存の単語分割ツールを使用することも、簡単な単語分割機能を自分で実装することもできます。
import jieba

def word_segmentation(text):
    words = jieba.cut(text) # 使用jieba进行中文分词
    return list(words)
  1. 次に、単語のセグメンテーション結果を調べて、各単語のセンチメント スコアを計算します。単語がセンチメント辞書にある場合、そのセンチメントの強さの値が合計スコアに追加されますが、それ以外の場合、単語は無視されます。
def sentiment_analysis(words):
    score = 0.0
    for word in words:
        if word in emotion_dict:
            score += emotion_dict[word]
    return score
  1. 最後に、スコアに基づいてユーザーの感情カテゴリが決定されます。スコアが0以上の場合はポジティブな感情、0未満の場合はネガティブな感情、それ以外の場合はニュートラルな感情と判断されます。
def emotion_recognition(score):
    if score > 0:
        return 'Positive'
    elif score < 0:
        return 'Negative'
    else:
        return 'Neutral'

上記は、感情辞書に基づくユーザー感情認識方法です。以下は完全なサンプル コードです:

import jieba

emotion_dict = {
    'happy': 1.0,
    'sad': -1.0,
    'angry': -1.5,
    'excited': 1.5,
    'calm': 0.0
}

def word_segmentation(text):
    words = jieba.cut(text)
    return list(words)

def sentiment_analysis(words):
    score = 0.0
    for word in words:
        if word in emotion_dict:
            score += emotion_dict[word]
    return score

def emotion_recognition(score):
    if score > 0:
        return 'Positive'
    elif score < 0:
        return 'Negative'
    else:
        return 'Neutral'

text = '今天天气真好,心情很愉快!'
words = word_segmentation(text)
score = sentiment_analysis(words)
emotion = emotion_recognition(score)
print(f'Text: {text}')
print(f'Words: {words}')
print(f'Sentiment Score: {score}')
print(f'Emotion: {emotion}')

上記のコード例は、特定のテキストの感情を実行する方法を示しています。認識し、感情カテゴリと感情スコアを出力します。この方法により、ユーザーの感情を重要な要素として利用して、インテリジェント アシスタント システムのインタラクションとサービスを最適化し、ユーザー エクスペリエンスを向上させることができます。

もちろん、上記のコード例は単純な感情認識方法にすぎず、実際のアプリケーションでは精度を向上させるためにより複雑なモデルやテクノロジーが必要になる場合があります。ただし、感情辞書ベースのアプローチは、ユーザーの感情的なニーズを理解し、適用するのに役立つシンプルかつ効果的な出発点です。

以上がインテリジェントアシスタントシステムにおけるユーザーの感情認識の問題の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
AI内部展開の隠された危険:ガバナンスのギャップと壊滅的なリスクAI内部展開の隠された危険:ガバナンスのギャップと壊滅的なリスクApr 28, 2025 am 11:12 AM

Apollo Researchの新しいレポートによると、高度なAIシステムの未確認の内部展開は、重大なリスクをもたらします。 主要なAI企業の間で一般的なこの監視の欠如は、Uncontに及ぶ潜在的な壊滅的な結果を可能にします

AIポリグラフの構築AIポリグラフの構築Apr 28, 2025 am 11:11 AM

従来の嘘検出器は時代遅れです。リストバンドで接続されたポインターに依存すると、被験者のバイタルサインと身体的反応を印刷する嘘発見器は、嘘を識別するのに正確ではありません。これが、嘘の検出結果が通常裁判所で採用されない理由ですが、多くの罪のない人々が投獄されています。 対照的に、人工知能は強力なデータエンジンであり、その実用的な原則はすべての側面を観察することです。これは、科学者がさまざまな方法で真実を求めるアプリケーションに人工知能を適用できることを意味します。 1つのアプローチは、嘘発見器のように尋問されている人の重要な符号応答を分析することですが、より詳細かつ正確な比較分析を行います。 別のアプローチは、言語マークアップを使用して、人々が実際に言うことを分析し、論理と推論を使用することです。 ことわざにあるように、ある嘘は別の嘘を繁殖させ、最終的に

AIは航空宇宙産業の離陸のためにクリアされていますか?AIは航空宇宙産業の離陸のためにクリアされていますか?Apr 28, 2025 am 11:10 AM

イノベーションの先駆者である航空宇宙産業は、AIを活用して、最も複雑な課題に取り組んでいます。 近代的な航空の複雑さの増加は、AIの自動化とリアルタイムのインテリジェンス機能を必要とします。

北京の春のロボットレースを見ています北京の春のロボットレースを見ていますApr 28, 2025 am 11:09 AM

ロボット工学の急速な発展により、私たちは魅力的なケーススタディをもたらしました。 NoetixのN2ロボットの重量は40ポンドを超えており、高さは3フィートで、逆流できると言われています。 UnitreeのG1ロボットの重量は、N2のサイズの約2倍で、高さは約4フィートです。また、競争に参加している多くの小さなヒューマノイドロボットがあり、ファンによって前進するロボットさえあります。 データ解釈 ハーフマラソンは12,000人以上の観客を惹きつけましたが、21人のヒューマノイドロボットのみが参加しました。政府は、参加しているロボットが競争前に「集中トレーニング」を実施したと指摘したが、すべてのロボットが競争全体を完了したわけではない。 チャンピオン - 北京ヒューマノイドロボットイノベーションセンターによって開発されたティアンゴニ

ミラートラップ:AI倫理と人間の想像力の崩壊ミラートラップ:AI倫理と人間の想像力の崩壊Apr 28, 2025 am 11:08 AM

人工知能は、現在の形式では、真にインテリジェントではありません。既存のデータを模倣して洗練するのに熟達しています。 私たちは人工知能を作成するのではなく、人工的な推論を作成しています。情報を処理するマシン、人間は

新しいGoogleリークは、便利なGoogle写真機能の更新を明らかにします新しいGoogleリークは、便利なGoogle写真機能の更新を明らかにしますApr 28, 2025 am 11:07 AM

レポートでは、更新されたインターフェイスがGoogle Photos Androidバージョン7.26のコードに隠されていることがわかり、写真を見るたびに、新しく検出された顔のサムネイルの行が画面の下部に表示されます。 新しいフェイシャルサムネイルには名前タグが欠落しているため、検出された各人に関する詳細情報を見るには、個別にクリックする必要があると思います。今のところ、この機能は、Googleフォトが画像で見つけた人々以外の情報を提供しません。 この機能はまだ利用できないため、Googleが正確にどのように使用するかはわかりません。 Googleはサムネイルを使用して、選択した人のより多くの写真を見つけるためにスピードアップしたり、編集して個人を選択するなど、他の目的に使用することもできます。待って見てみましょう。 今のところ

補強能力のガイド - 分析Vidhya補強能力のガイド - 分析VidhyaApr 28, 2025 am 09:30 AM

補強能力は、人間のフィードバックに基づいて調整するためにモデルを教えることにより、AI開発を揺さぶりました。それは、監督された学習基盤と報酬ベースの更新をブレンドして、より安全で、より正確に、そして本当に助けます

踊りましょう:私たちの人間のニューラルネットを微調整するための構造化された動き踊りましょう:私たちの人間のニューラルネットを微調整するための構造化された動きApr 27, 2025 am 11:09 AM

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。