タイトル: 時系列に基づく予測問題、具体的なコード例を学習します
はじめに:
時系列予測とは、過去の観測データに基づいて予測することを指します。将来の一定期間にわたる価値観や傾向の変化。株式市場の予測、天気予報、交通流の予測など、さまざまな分野で幅広い用途があります。この記事では、時系列予測の基本原理と一般的に使用される予測方法に焦点を当て、時系列予測の実装プロセスを詳しく学ぶのに役立つ具体的なコード例を示します。
1. 時系列予測の基本原則
時系列予測の基本原則は、履歴データを使用して将来の値や傾向を推測することです。その基本的な前提は、将来のデータと過去のデータの間には一定の関係があり、過去のデータを使用して将来のデータを予測できるということです。時系列予測には通常、次の手順が含まれます。
- データ収集: 時間と対応する値を含む、一定期間にわたる観測データを収集します。
- データの前処理: 平滑化、欠損値の処理、外れ値の処理など、収集されたデータを前処理します。
- データの視覚化: グラフやその他の方法を使用してデータを視覚化し、データの傾向、季節性、その他の特性の観察を容易にします。
- モデル フィッティング: 観察されたデータの特性に基づいて、適切な予測モデルを選択します。一般的に使用されるモデルには、ARIMA モデル、SARIMA モデル、ニューラル ネットワーク モデルなどが含まれます。
- モデル評価: 二乗平均平方根誤差 (RMSE) などの特定の指標を使用して、モデルの予測効果を評価します。
- モデル適用: モデルを将来予測に適用して予測結果を取得します。
2. 時系列予測の一般的な方法
- ARIMA モデル
ARIMA (AutoRegressive Integrated Moving Average) モデルは、一般的に使用される線形時系列モデルです。時系列予測に広く使用されています。これには、自己回帰 (AR)、差分 (I)、および移動平均 (MA) の 3 つの部分が含まれます。
ARIMA モデルのコード例 (Python の statsmodels ライブラリを使用):
from statsmodels.tsa.arima_model import ARIMA # 训练ARIMA模型 model = ARIMA(data, order=(p, d, q)) model_fit = model.fit(disp=0) # 预测未来一段时间的数值 forecast = model_fit.forecast(steps=n)
- SARIMA モデル
SARIMA (季節的自動回帰統合移動平均) モデルは ARIMA モデルです。季節性のある時系列データの拡張。 ARIMA モデルに基づいて季節コンポーネントを追加します。
SARIMA モデルのコード例:
from statsmodels.tsa.statespace.sarimax import SARIMAX # 训练SARIMA模型 model = SARIMAX(data, order=(p, d, q), seasonal_order=(P, D, Q, S)) model_fit = model.fit(disp=0) # 预测未来一段时间的数值 forecast = model_fit.forecast(steps=n)
- LSTM モデル
LSTM (Long Short-Term Memory) モデルは、一般的に使用されるニューラル ネットワーク モデルで、特に次の用途に適しています。時系列予測問題用。時系列の長期的な依存関係をキャプチャできます。
LSTM モデルのコード例 (Python の Keras ライブラリを使用):
from keras.models import Sequential from keras.layers import LSTM, Dense # 构建LSTM模型 model = Sequential() model.add(LSTM(units=64, input_shape=(None, 1))) model.add(Dense(units=1)) # 编译模型 model.compile(optimizer='adam', loss='mean_squared_error') # 训练模型 model.fit(x_train, y_train, epochs=10, batch_size=32) # 预测未来一段时间的数值 forecast = model.predict(x_test)
3. 概要
時系列予測は重要かつ困難なタスクです。データの前処理と特徴抽出を行い、予測に適切なモデルを選択します。この記事では、時系列予測の基本原理と一般的に使用される予測方法を紹介し、対応するコード例を示します。この記事を読むことで、読者が時系列予測について理解を深め、具体的なコード例を使用して実践できることを願っています。
以上が時系列に基づいた問題の予測の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

「AI-Ready労働力」という用語は頻繁に使用されますが、サプライチェーン業界ではどういう意味ですか? サプライチェーン管理協会(ASCM)のCEOであるAbe Eshkenaziによると、批評家ができる専門家を意味します

分散型AI革命は静かに勢いを増しています。 今週の金曜日、テキサス州オースティンでは、ビテンサーのエンドゲームサミットは極めて重要な瞬間を示し、理論から実用的な応用に分散したAI(DEAI)を移行します。 派手なコマーシャルとは異なり

エンタープライズAIはデータ統合の課題に直面しています エンタープライズAIの適用は、ビジネスデータを継続的に学習することで正確性と実用性を維持できるシステムを構築する大きな課題に直面しています。 NEMOマイクロサービスは、NVIDIAが「データフライホイール」と呼んでいるものを作成することにより、この問題を解決し、AIシステムがエンタープライズ情報とユーザーインタラクションへの継続的な露出を通じて関連性を維持できるようにします。 この新しく発売されたツールキットには、5つの重要なマイクロサービスが含まれています。 NEMOカスタマイザーは、より高いトレーニングスループットを備えた大規模な言語モデルの微調整を処理します。 NEMO評価者は、カスタムベンチマークのAIモデルの簡素化された評価を提供します。 Nemo Guardrailsは、コンプライアンスと適切性を維持するためにセキュリティ管理を実装しています

AI:芸術とデザインの未来 人工知能(AI)は、前例のない方法で芸術とデザインの分野を変えており、その影響はもはやアマチュアに限定されませんが、より深く影響を与えています。 AIによって生成されたアートワークとデザインスキームは、広告、ソーシャルメディアの画像生成、Webデザインなど、多くのトランザクションデザインアクティビティで従来の素材画像とデザイナーに迅速に置き換えられています。 ただし、プロのアーティストやデザイナーもAIの実用的な価値を見つけています。 AIを補助ツールとして使用して、新しい美的可能性を探求し、さまざまなスタイルをブレンドし、新しい視覚効果を作成します。 AIは、アーティストやデザイナーが繰り返しタスクを自動化し、さまざまなデザイン要素を提案し、創造的な入力を提供するのを支援します。 AIはスタイル転送をサポートします。これは、画像のスタイルを適用することです

最初はビデオ会議プラットフォームで知られていたZoomは、エージェントAIの革新的な使用で職場革命をリードしています。 ZoomのCTOであるXD Huangとの最近の会話は、同社の野心的なビジョンを明らかにしました。 エージェントAIの定義 huang d

AIは教育に革命をもたらしますか? この質問は、教育者と利害関係者の間で深刻な反省を促しています。 AIの教育への統合は、機会と課題の両方をもたらします。 Tech Edvocate NotesのMatthew Lynch、Universitとして

米国における科学的研究と技術の開発は、おそらく予算削減のために課題に直面する可能性があります。 Natureによると、海外の雇用を申請するアメリカの科学者の数は、2024年の同じ期間と比較して、2025年1月から3月まで32%増加しました。以前の世論調査では、調査した研究者の75%がヨーロッパとカナダでの仕事の検索を検討していることが示されました。 NIHとNSFの助成金は過去数か月で終了し、NIHの新しい助成金は今年約23億ドル減少し、3分の1近く減少しました。リークされた予算の提案は、トランプ政権が科学機関の予算を急激に削減していることを検討しており、最大50%の削減の可能性があることを示しています。 基礎研究の分野での混乱は、米国の主要な利点の1つである海外の才能を引き付けることにも影響を与えています。 35

Openaiは、強力なGPT-4.1シリーズを発表しました。実際のアプリケーション向けに設計された3つの高度な言語モデルのファミリー。 この大幅な飛躍は、より速い応答時間、理解の強化、およびTと比較した大幅に削減されたコストを提供します


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









