検索
ホームページテクノロジー周辺機器AIパラメータ数は7億7千万、5,400億PaLMを突破! UW Google、トレーニング データの 80% のみが必要な「段階的蒸留」を提案 | ACL 2023

大規模な言語モデルはパフォーマンスに優れており、ゼロまたは数ショットのヒントで新しいタスクを解決できます。しかし、LLM はメモリ利用効率が低く、大量のコンピューティング リソースを必要とするため、実際のアプリケーション展開ではあまり実用的ではありません。たとえば、1,750 億個のパラメータを持つ言語モデル サービスを実行するには、少なくとも 350 GB のビデオ メモリが必要です。現在の最先端の言語モデルには 5,000 億を超えるパラメーターがあり、多くの研究チームにはそれらを実行するための十分なリソースがなく、実際のアプリケーションでの低遅延パフォーマンスを満たすことができません。

手動でラベル付けされたデータや、LLM で生成されたラベルを使用した蒸留を使用して、より小規模なタスク固有のモデルをトレーニングする研究もいくつかありますが、LLM と同等のパフォーマンスを達成するには、微調整と蒸留に大量のトレーニング データが必要です。 。

大規模モデルのリソース要件の問題を解決するために、ワシントン大学と Google は協力して、「ステップバイステップ蒸留」と呼ばれる新しい蒸留メカニズムを提案しました。段階的な蒸留により、蒸留されたモデルのサイズは元のモデルより小さくなりますが、パフォーマンスは向上し、微調整および蒸留プロセス中に必要なトレーニング データの量は少なくなります

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023#論文を表示するには、次のリンクをクリックしてください: https://arxiv.org/abs/2305.02301

分配蒸留メカニズムは、LLM から予測理由を抽出します (理論的根拠 ) は、マルチタスク フレームワーク内で小規模モデルをトレーニングするための追加の監視情報として使用されます。

4 つの NLP ベンチマークの実験後、次のことがわかりました: 7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

1. 微調整や蒸留と比較して、このメカニズムでは使用するトレーニング サンプルが少なくなり、より優れたパフォーマンスが得られます;

少数サンプルのプロンプト LLM と比較して、このメカニズムはより小さなサイズのモデルを使用してより優れたパフォーマンスを実現します

3。同時に、モデルのサイズを削減し、データ量も削減できます。 LLM よりも優れたパフォーマンス。

実験では、微調整後の 770M T5 モデルは、利用可能なデータの 80% のみを使用したベンチマーク テストでサンプル ヒントがほとんどなかった 540B PaLM モデルよりも優れていましたが、同じ標準の T5 モデルよりも優れていました。 100% 使用したデータセットでも微調整することも困難です。

蒸留方法

分散蒸留の重要なアイデアは、自然言語で記述された情報豊富な予測理由、つまり中間推論ステップを徐々に抽出して、入力間のつながりを説明することです。問題とモデルの出力を分析し、これらのデータを使用して小さなモデルをより効率的にトレーニングします。

分配蒸留には主に 2 つの段階が含まれます: 7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

1. LLM の抽出原理 (根拠) から

#研究者は、少数サンプルの思考連鎖 (CoT) プロンプトを使用して、LLM から予測中間ステップを抽出します。

対象タスクを決定したら、まず LLM 入力プロンプトでいくつかのサンプルを準備します。各例は、入力、原理、出力を含むトリプレットで構成されています。

プロンプトを入力した後、LLM はトリプレットのデモンストレーションを模倣して、他の新しい問題を生成できます。たとえば、予測原理などです。常識的な質問と回答のタスクで、7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023 という入力質問が与えられた場合:

サミーは群衆が集まる場所に行きたいと考えています。彼はどこを選ぶでしょうか?オプションは次のとおりです: (a) 人口密集地域、(b) 競馬場、(c) 砂漠、(d) アパート、(e) 道路障害物

(サミーは人々がいる場所に行きたかった。彼はどこへ行くのでしょう? 回答の選択肢: (a) 人口密集地域、(b) 競馬場、(c) 砂漠、(d) アパート、(e) 道路封鎖)

段階的な改良の後、LLM あなたは「(a) 人口密集地」の設問に正解し、「答えは人の多い場所でなければなりません。上記の選択肢のうち、人が多いのは人口密集地だけです。」の設問にその理由を述べることができる。 徐々に改良を加えた結果、LLM は正解は「(a) 人口密集地域」であると結論付けることができ、質問の回答理由を「答えは多くの人が集まる場所でなければなりません。上記の選択肢のうち、人口密集地域のみです」と回答しました。たくさんの人がいます。「人。」

プロンプトで根拠と組み合わせた CoT 例を提供することにより、コンテキスト学習機能により、LLM は、遭遇していない質問タイプに対して適切な回答理由を生成できるようになります

2. トレーニング ミニ モデル

トレーニング プロセスをマルチタスク問題として構築することで、予測の理由を抽出し、トレーニング用の小規模モデルに組み込むことができます。

標準のラベル予測タスクに加えて、研究者らはまた、新しい理由生成タスクを使用して小規模モデルをトレーニングしました。これにより、モデルは予測のための中間推論ステップを生成する方法を学習し、結果ラベルをより適切に予測できるようにモデルをガイドできるようになりました。

入力プロンプトにタスクのプレフィックス「label」と「rationale」を追加して、ラベル予測タスクと理由生成タスクを区別します。

実験結果

実験では、研究者らはLLMベースラインとして5,400億個のパラメータを持つPaLMモデルを選択し、タスク関連の下流小規模モデルとしてT5モデルを使用しました。

この研究では、自然言語推論用の e-SNLI と ANLI、常識的な質問応答用の CQA、および算術数学のアプリケーション問題用の SVAMP という 4 つのベンチマーク データセットで実験を実施しました。これら 3 つの異なる NLP タスクについて実験を行いました。

トレーニング データが少ない

段階的蒸留法の方が、標準の微調整よりもパフォーマンスが高く、必要なトレーニング データが少なくなります

e-SNLI データセットでは、完全なデータセットの 12.5% を使用したときに標準の微調整よりも優れたパフォーマンスが達成されますが、ANLI では、わずか 75%、25%、および 20% を使用した場合に達成されます。トレーニング データは CQA と SVAMP でそれぞれ必要です。

7.7亿参数,超越5400亿PaLM!UW谷歌提出「分步蒸馏」,只需80%训练数据|ACL 2023

手動でラベル付けされたさまざまなサイズのデータ​​セットに対して 220M T5 モデルを使用した標準的な微調整と比較して、すべてのデータセットで使用するトレーニング サンプルの数が少ない場合、分布の抽出が優れています。少数ショットの CoT 蒸留によって LLM を実行すると、サイズははるかに小さくなりますが、パフォーマンスは向上します。

e-SNLI データ セットでは、220M T5 モデルを使用すると 540B PaLM よりも優れたパフォーマンスが得られます。ANLI では、770M T5 モデルを使用すると、540B PaLM よりも優れたパフォーマンスが得られます。モデル サイズはわずか 1/700 #より小さなモデル、より少ないデータ

モデルのサイズとトレーニング データを削減しながら、数ショット PaLM

# を超えるパフォーマンスを達成することに成功しました。 ## ANLI では、データセット全体の 80% のみを使用しながら、770M T5 モデルを使用して 540B PaLM を上回りました

##標準的な微調整では、完全な 100% データセットでも PaLM のパフォーマンス レベルを維持できます。これは、段階的な蒸留によってモデル サイズとトレーニング データの量を同時に削減できるため、LLM を超えるパフォーマンスを達成できることを示しています。

以上がパラメータ数は7億7千万、5,400億PaLMを突破! UW Google、トレーニング データの 80% のみが必要な「段階的蒸留」を提案 | ACL 2023の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

AI抢饭碗成真!近500家美国企业用ChatGPT取代员工,有公司省下超10万美元AI抢饭碗成真!近500家美国企业用ChatGPT取代员工,有公司省下超10万美元Apr 07, 2023 pm 02:57 PM

自从ChatGPT掀起浪潮,不少人都在担心AI快要抢人类饭碗了。然鹅,现实可能更残酷QAQ......据就业服务平台Resume Builder调查统计,在1000多家受访美国企业中,用ChatGPT取代部分员工的,比例已达到惊人的48%。在这些企业中,有49%已经启用ChatGPT,还有30%正在赶来的路上。就连央视财经也为此专门发过一个报道:相关话题还曾一度冲上了知乎热榜,众网友表示,不得不承认,现在ChatGPT等AIGC工具已势不可挡——浪潮既来,不进则退。有程序员还指出:用过Copil

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)