検索
ホームページテクノロジー周辺機器AIその真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

素晴らしい写真を撮るのがますます簡単になりました。

休日の旅行には写真撮影が欠かせません。しかし、景勝地で撮った写真のほとんどは、背景に何か余分なものがあるか、何かが欠けているかのどちらかで、多かれ少なかれ残念な写真になります。

「完璧な」画像を取得することは、履歴書研究者が長年努力してきた目標の 1 つです。最近、Google Research とコーネル大学の研究者が協力して、「本物の画像補完」テクノロジー、つまり画像補完のための生成モデルである RealFill を提案しました。

RealFill モデルの利点は、少数のシーン参照画像を使用してカスタマイズできることです。これらの参照画像はターゲット画像と位置合わせする必要がなく、表示に関して変更することもできます。角度、照明条件、カメラの絞り、画像スタイルなど、大きな違いがあります。パーソナライゼーションが完了すると、RealFill は、元のシーンに忠実な方法で、視覚的に魅力的なコンテンツでターゲット画像を補完できます。

その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

  • # 論文を表示するには、次のリンクをクリックしてください: https://arxiv.org/abs/2309.16668

  • # #プロジェクトページのリンク: https://realfill.github.io/
インペイント モデルとアウトペイント モデルは、画像の未知の領域に高品質で妥当な画像コンテンツを生成できるテクノロジですが、これらのモデルによって生成されるコンテンツは必然的に非現実的になります。実際のシーンのコンテキスト情報。対照的に、RealFill はそこに「あるべき」コンテンツを生成し、画像補完の結果をより現実的にします。

著者らは論文の中で、新しい画像補完問題「本物の画像補完」を定義したと指摘しました。従来の生成画像復元 (欠落領域を置き換えるコンテンツは元のシーンと一致しない可能性がある) とは異なり、実画像完成の目標は、「表示されるべきコンテンツ」を使用して、完成したコンテンツを元のシーンに可能な限り忠実に作成することです。 「そこにあるかもしれない」コンテンツでターゲット画像を完成させます。

著者らは、RealFill は、プロセスにさらに条件を追加する (つまり、参照画像を追加する) ことによって、生成画像修復モデルの表現力を拡張する最初の方法であると述べています。

RealFill は、多様で困難な一連のシナリオをカバーする新しい画像補完ベンチマークで、既存の手法を大幅に上回ります。

方法

RealFill の目標は、特定のターゲット イメージの欠落部分を補完するために少数の参照イメージを使用します。具体的には、最大 5 つの参照画像と、同じシーンを大まかにキャプチャしたターゲット画像 (ただし、レイアウトや外観が異なる場合があります) が与えられます。

研究者は、特定のシーンについて、まず、リファレンス画像とターゲット画像で事前トレーニングされた修復拡散モデルを微調整することにより、パーソナライズされた生成モデルを作成します。この微調整プロセスは、微調整モデルが良好な画像事前分布を維持するだけでなく、入力画像内のシーンの内容、照明、およびスタイルも学習するように設計されています。次に、この微調整されたモデルを使用して、標準の拡散サンプリング プロセスを通じてターゲット イメージ内の欠落領域を埋めます。 その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

実用的なアプリケーションの価値を考慮して、このモデルはより困難な問題に特別な注意を払っていることは注目に値します。制約がない場合、ターゲット イメージとリファレンス イメージは、視点、環境条件、カメラの絞り、イメージ スタイル、さらには移動するオブジェクトさえも大きく異なる場合があります。

#実験結果

左の参考画像によると、RealFill はターゲット画像は拡大 (アンクロップ) または修復 (インペイント) され、生成された結果は視覚的に魅力的であるだけでなく、基準画像とターゲット画像が視点、絞り、照明などの側面で異なる場合でも、基準画像と一致します。 、画像スタイル、オブジェクトの動きなど、大きな違いがあります。

その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表#RealFill モデルの出力効果。左側に参照イ​​メージがあると、RealFill は右側の対応するターゲット イメージを拡張できます。ホワイト ボックスの内側の領域は既知のピクセルとしてネットワークに提供され、ホワイト ボックスの外側の領域は生成されます。結果は、視点、絞り、照明、画像スタイル、オブジェクトの動きなど、参照画像とターゲット画像の間に大きな違いがある場合でも、RealFill が参照画像に忠実な高品質の画像を生成できることを示しています。出典: 論文

対照実験

研究者らは、RealFill モデルを他のベースライン手法と比較しました。比較すると、RealFill は高品質の結果を生成し、シーンの忠実性と参照イメージとの一貫性の点で優れたパフォーマンスを発揮します。

ペイントバイサンプルは、高レベルのセマンティック情報しかキャプチャできない CLIP 埋め込みに依存しているため、高度なシーン忠実度を実現できません。

安定拡散修復では、一見妥当な結果が生成されますが、プロンプトの表現力が限られているため、最終的に生成される結果は参照イメージと一致しません。

その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

RealFill と他の 2 つのベースライン メソッドとの比較。透明な白いマスクで覆われた領域は、ターゲット イメージの未変更の部分です。出典: realfill.github.io

##制限事項

研究者も いくつかの可能性処理速度、視点の変更を処理する機能、基礎となるモデルにとって困難な状況を処理する機能など、RealFill モデルの問題と制限について説明します。具体的には:

RealFill は入力画像に対してグラデーションベースの微調整プロセスを必要とするため、実行が比較的遅くなります。
参照イメージとターゲット イメージ間の視点の変更が非常に大きい場合、特に参照イメージが 1 つしかない場合、RealFill は 3D シーンを復元できないことがよくあります。

RealFill は主にベースの事前トレーニング済みモデルから継承した画像事前分布に依存しているため、安定した拡散モデルなど、ベース モデルにとって困難な状況には対処できません。テキストをうまく処理できません。

その真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表

最後に、著者は協力者に感謝の意を表します:

Rundi Wu、Qianqian Wang、Viraj Shah、Ethan Weber、Zhengqi に感謝します。貴重な議論とフィードバックを提供してくれた Li 、Kyle Genova、Boyang Deng、Maya Goldenberg、Noah Snavely、Ben Poole、Ben Mildenhall、Alex Rav-Acha、Pratul Srinivasan、Dor Verbin、Jon Barron に感謝します。また、Zeya Peng、Rundi Wu、 Shan Nan 氏 (データセットの貢献度の評価)。このプロジェクトに対するフィードバックとサポートをいただいた Jason Baldridge、Kihyuk Sohn、Kathy Meier-Hellstern、Nicole Brichtova に特に感謝します。

詳細については、元の論文を読み、プロジェクトのホームページにアクセスしてください

以上がその真実性は衝撃的です! Googleとコーネル大学が実写画像補完技術RealFillを発表の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は机器之心で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
DSA如何弯道超车NVIDIA GPU?DSA如何弯道超车NVIDIA GPU?Sep 20, 2023 pm 06:09 PM

你可能听过以下犀利的观点:1.跟着NVIDIA的技术路线,可能永远也追不上NVIDIA的脚步。2.DSA或许有机会追赶上NVIDIA,但目前的状况是DSA濒临消亡,看不到任何希望另一方面,我们都知道现在大模型正处于风口位置,业界很多人想做大模型芯片,也有很多人想投大模型芯片。但是,大模型芯片的设计关键在哪,大带宽大内存的重要性好像大家都知道,但做出来的芯片跟NVIDIA相比,又有何不同?带着问题,本文尝试给大家一点启发。纯粹以观点为主的文章往往显得形式主义,我们可以通过一个架构的例子来说明Sam

阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型阿里云通义千问14B模型开源!性能超越Llama2等同等尺寸模型Sep 25, 2023 pm 10:25 PM

2021年9月25日,阿里云发布了开源项目通义千问140亿参数模型Qwen-14B以及其对话模型Qwen-14B-Chat,并且可以免费商用。Qwen-14B在多个权威评测中表现出色,超过了同等规模的模型,甚至有些指标接近Llama2-70B。此前,阿里云还开源了70亿参数模型Qwen-7B,仅一个多月的时间下载量就突破了100万,成为开源社区的热门项目Qwen-14B是一款支持多种语言的高性能开源模型,相比同类模型使用了更多的高质量数据,整体训练数据超过3万亿Token,使得模型具备更强大的推

ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项ICCV 2023揭晓:ControlNet、SAM等热门论文斩获奖项Oct 04, 2023 pm 09:37 PM

在法国巴黎举行了国际计算机视觉大会ICCV(InternationalConferenceonComputerVision)本周开幕作为全球计算机视觉领域顶级的学术会议,ICCV每两年召开一次。ICCV的热度一直以来都与CVPR不相上下,屡创新高在今天的开幕式上,ICCV官方公布了今年的论文数据:本届ICCV共有8068篇投稿,其中有2160篇被接收,录用率为26.8%,略高于上一届ICCV2021的录用率25.9%在论文主题方面,官方也公布了相关数据:多视角和传感器的3D技术热度最高在今天的开

AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验AI技术在蚂蚁集团保险业务中的应用:革新保险服务,带来全新体验Sep 20, 2023 pm 10:45 PM

保险行业对于社会民生和国民经济的重要性不言而喻。作为风险管理工具,保险为人民群众提供保障和福利,推动经济的稳定和可持续发展。在新的时代背景下,保险行业面临着新的机遇和挑战,需要不断创新和转型,以适应社会需求的变化和经济结构的调整近年来,中国的保险科技蓬勃发展。通过创新的商业模式和先进的技术手段,积极推动保险行业实现数字化和智能化转型。保险科技的目标是提升保险服务的便利性、个性化和智能化水平,以前所未有的速度改变传统保险业的面貌。这一发展趋势为保险行业注入了新的活力,使保险产品更贴近人民群众的实际

复旦大学团队发布中文智慧法律系统DISC-LawLLM,构建司法评测基准,开源30万微调数据复旦大学团队发布中文智慧法律系统DISC-LawLLM,构建司法评测基准,开源30万微调数据Sep 29, 2023 pm 01:17 PM

随着智慧司法的兴起,智能化方法驱动的智能法律系统有望惠及不同群体。例如,为法律专业人员减轻文书工作,为普通民众提供法律咨询服务,为法学学生提供学习和考试辅导。由于法律知识的独特性和司法任务的多样性,此前的智慧司法研究方面主要着眼于为特定任务设计自动化算法,难以满足对司法领域提供支撑性服务的需求,离应用落地有不小的距离。而大型语言模型(LLMs)在不同的传统任务上展示出强大的能力,为智能法律系统的进一步发展带来希望。近日,复旦大学数据智能与社会计算实验室(FudanDISC)发布大语言模型驱动的中

百度文心一言全面向全社会开放,率先迈出重要一步百度文心一言全面向全社会开放,率先迈出重要一步Aug 31, 2023 pm 01:33 PM

8月31日,文心一言首次向全社会全面开放。用户可以在应用商店下载“文心一言APP”或登录“文心一言官网”(https://yiyan.baidu.com)进行体验据报道,百度计划推出一系列经过全新重构的AI原生应用,以便让用户充分体验生成式AI的理解、生成、逻辑和记忆等四大核心能力今年3月16日,文心一言开启邀测。作为全球大厂中首个发布的生成式AI产品,文心一言的基础模型文心大模型早在2019年就在国内率先发布,近期升级的文心大模型3.5也持续在十余个国内外权威测评中位居第一。李彦宏表示,当文心

致敬TempleOS,有开发者创建了启动Llama 2的操作系统,网友:8G内存老电脑就能跑致敬TempleOS,有开发者创建了启动Llama 2的操作系统,网友:8G内存老电脑就能跑Oct 07, 2023 pm 10:09 PM

不得不说,Llama2的「二创」项目越来越硬核、有趣了。自Meta发布开源大模型Llama2以来,围绕着该模型的「二创」项目便多了起来。此前7月,特斯拉前AI总监、重回OpenAI的AndrejKarpathy利用周末时间,做了一个关于Llama2的有趣项目llama2.c,让用户在PyTorch中训练一个babyLlama2模型,然后使用近500行纯C、无任何依赖性的文件进行推理。今天,在Karpathyllama2.c项目的基础上,又有开发者创建了一个启动Llama2的演示操作系统,以及一个

快手黑科技“子弹时间”赋能亚运转播,打造智慧观赛新体验快手黑科技“子弹时间”赋能亚运转播,打造智慧观赛新体验Oct 11, 2023 am 11:21 AM

杭州第19届亚运会不仅是国际顶级体育盛会,更是一场精彩绝伦的中国科技盛宴。本届亚运会中,快手StreamLake与杭州电信深度合作,联合打造智慧观赛新体验,在击剑赛事的转播中,全面应用了快手StreamLake六自由度技术,其中“子弹时间”也是首次应用于击剑项目国际顶级赛事。中国电信杭州分公司智能亚运专班组长芮杰表示,依托快手StreamLake自研的4K3D虚拟运镜视频技术和中国电信5G/全光网,通过赛场内部署的4K专业摄像机阵列实时采集的高清竞赛视频,

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン