ドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデル
現在の明らかな傾向は、印象的な言語出力を生成できる数百億、数千億のパラメーターを備えた、より大規模で複雑なモデルを構築する方向です。
#ただし、既存の大規模言語モデルは主に文字情報に集中し、視覚情報を理解できない。 マルチモーダル大規模言語モデル (MLLM) の分野の進歩は、この制限に対処することを目的としています。MLLM は、視覚情報とテキスト情報を単一の Transformer ベースのモデルに融合し、モデルを次のようにします。両方のモダリティに基づいてコンテンツを学習および生成できます。 MLLM は、自然な画像理解やテキスト画像理解など、さまざまな実用的なアプリケーションでの可能性を示しています。これらのモデルは、マルチモーダルな問題を処理するための共通インターフェイスとして言語モデリングを活用し、テキストおよび視覚的な入力に基づいて応答を処理および生成できるようにします。ただし、現在は主に自然画像用の低解像度 MLLM に重点が置かれており、テキストに関する研究は比較的少ないです。 -濃密な画像。したがって、テキスト画像をトレーニングプロセスに組み込んでモデルを開発することにより、大規模なマルチモーダル事前トレーニングを活用してテキスト画像を処理することがMLLM研究の重要な方向性となっています テキストと視覚情報に基づいて、高解像度のテキスト密度の高い画像を含むマルチモーダル アプリケーションの新たな可能性を開くことができます。 写真論文アドレス: https://arxiv.org/abs/2309.11419##KOSMOS-2.5 は、テキスト密度の高い画像に基づくマルチモーダル大規模言語モデルです。KOSMOS-2 に基づいて開発され、テキスト密度の高い画像のマルチモーダルな読み取りおよび理解機能を強調しています (マルチモーダル読み書きモデル)。
KOSMOS-2.5 はマルチモーダル モデルです図 1 に示すように、統合フレームワークを使用して 2 つの密接に関連するタスクを処理することを目的としています。
図 2 に示すように、どちらのタスクも共有の Transformer アーキテクチャとタスク固有のプロンプトを使用します。
#図 3: トレーニング前のデータ セット
このモデルをトレーニングするために、作成者は図 3 に示すように、データ セットのサイズは 3 億 2,440 万個です。#図 4: 境界ボックスを使用したテキスト行のトレーニング サンプルの例
図 5: マークダウン形式のトレーニング サンプルの例
このマルチタスク トレーニング方法は、KOSMOS-2.5 の全体的なマルチモーダル機能を向上させます
[図 6] エンドツーエンドのドキュメントレベルのテキスト認識実験
図 7: 画像から Markdown 形式のテキストを生成する実験
図 6 と 7 に示すように、KOSMOS-2.5 は、エンドツーエンドのドキュメントレベルのテキスト認識と画像からの Markdown 形式のテキストの生成という 2 つのタスクで評価されます。 。
KOSMOS-2.5 は、実験結果が示すように、テキスト中心の画像タスクの処理に優れています。
図 8: KOSMOS-2.5の入出力サンプル表示
KOSMOS-2.5は、数ショット学習およびゼロショット学習シナリオで有望な機能を示しており、実用的な多目的ツールになります。テキストの多い画像を処理するアプリケーション。これは、テキストの多い画像を効果的に処理し、数回のショットとゼロショットの学習状況の両方で有望な機能を発揮できる多用途ツールと考えることができます。チューニングは、モデルの幅広い適用能力を実現する有望な方法です。
より広範な研究分野において、重要な方向性は、モデル パラメーターを拡張する機能をさらに開発することにあります。
タスクの範囲と複雑さが拡大し続ける中、テキスト集約型のマルチモーダル モデルの開発には、大量のデータを処理できるようにモデルをスケーリングすることが重要です。
最終的な目標は、ビジュアル データとテキスト データを効果的に解釈し、テキストを多用するマルチモーダル タスク全体にうまく汎用化できるモデルを開発することです。
内容を書き換える場合は中国語に書き直す必要があり、元の文章は表示する必要はありません
https://arxiv.org/abs/ 2309.11419
以上がドキュメント内の単語が多ければ多いほど、モデルはより興奮します。 KOSMOS-2.5: 「テキスト密度の高い画像」を読み取るためのマルチモーダル大規模言語モデルの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか

GoogleのGemini Advanced:Horizonの新しいサブスクリプションティア 現在、Gemini Advancedにアクセスするには、1か月あたり19.99ドルのGoogle One AIプレミアムプランが必要です。 ただし、Android Authorityのレポートは、今後の変更を示唆しています。 最新のGoogle p

高度なAI機能を取り巻く誇大宣伝にもかかわらず、エンタープライズAIの展開内に大きな課題が潜んでいます:データ処理ボトルネック。 CEOがAIの進歩を祝う間、エンジニアはクエリの遅い時間、過負荷のパイプライン、

ドキュメントの取り扱いは、AIプロジェクトでファイルを開くだけでなく、カオスを明確に変えることです。 PDF、PowerPoint、Wordなどのドキュメントは、あらゆる形状とサイズでワークフローをフラッシュします。構造化された取得

Googleのエージェント開発キット(ADK)のパワーを活用して、実際の機能を備えたインテリジェントエージェントを作成します。このチュートリアルは、ADKを使用して会話エージェントを構築し、GeminiやGPTなどのさまざまな言語モデルをサポートすることをガイドします。 w

まとめ: Small Language Model(SLM)は、効率のために設計されています。それらは、リソース不足、リアルタイム、プライバシーに敏感な環境の大手言語モデル(LLM)よりも優れています。 特にドメインの特異性、制御可能性、解釈可能性が一般的な知識や創造性よりも重要である場合、フォーカスベースのタスクに最適です。 SLMはLLMSの代替品ではありませんが、精度、速度、費用対効果が重要な場合に理想的です。 テクノロジーは、より少ないリソースでより多くを達成するのに役立ちます。それは常にドライバーではなく、プロモーターでした。蒸気エンジンの時代からインターネットバブル時代まで、テクノロジーの力は、問題の解決に役立つ範囲にあります。人工知能(AI)および最近では生成AIも例外ではありません

コンピュータービジョンのためのGoogleGeminiの力を活用:包括的なガイド 大手AIチャットボットであるGoogle Geminiは、その機能を会話を超えて拡張して、強力なコンピュータービジョン機能を網羅しています。 このガイドの利用方法については、

2025年のAIランドスケープは、GoogleのGemini 2.0 FlashとOpenaiのO4-Miniの到着とともに感動的です。 数週間離れたこれらの最先端のモデルは、同等の高度な機能と印象的なベンチマークスコアを誇っています。この詳細な比較


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

ホットトピック









