Django Prophet を使用して交通渋滞を予測するにはどうすればよいですか?
はじめに
交通渋滞は、すべての都市が直面する共通の問題です。交通渋滞を解決するには、交通の流れを正確に予測し、渋滞を緩和するための適切な措置を講じることが必要です。この記事では、Django Prophet モジュールを使用して交通渋滞を予測する方法を詳細なコード例とともに紹介します。
- Django Prophet の概要
Django Prophet は、Python ベースの時系列予測モジュールであり、Django フレームワークにおける Facebook Prophet モジュールの実装です。 Prophet モジュールは、Facebook によって開発された、高速かつ柔軟で使いやすい時系列予測ツールです。これは相加的モデルに基づいており、傾向、季節性、休日などを含む解釈可能なコンポーネントを備えています。 - データの収集と準備
まず、交通の流れに関連するデータを収集する必要があります。このデータは、交通モニターやバスの GPS データなどのソースから取得できます。この例では、長期にわたる交通流データがあると仮定します。データには、日付/時刻列とトラフィック量を表す列が含まれている必要があります。
次に、データをロードし、必要な前処理を実行します。 Pandas ライブラリを使用して、これらのタスクを実行できます。サンプル コードは次のとおりです。
import pandas as pd # 加载数据 data = pd.read_csv('traffic_data.csv') # 将日期/时间列转换为日期时间对象 data['datetime'] = pd.to_datetime(data['datetime']) # 将流量列命名为‘y’ data.rename(columns={'traffic': 'y'}, inplace=True) # 将日期时间列设为索引 data.set_index('datetime', inplace=True) # 对缺失值进行插值处理 data.interpolate(method='linear', inplace=True) # 打印数据前几行 print(data.head())
- Django Prophet モデルの作成
次に、時系列予測用の Django Prophet モデルを作成する必要があります。まず、Django Prophet モジュールをインストールする必要があります。次のコマンドを使用してインストールできます:
pip install django-prophet
次に、Django プロジェクトの settings.py ファイルに次のコードを追加する必要があります:
INSTALLED_APPS = [ ... 'django_prophet', ... ]
サンプル コードは次のとおりです。次のように:
from datetime import timedelta from django.db import models from django_prophet.models import ProphetModel # 创建Django Prophet模型 class TrafficPredictionModel(ProphetModel): # 定义预测时间间隔 prediction_period = models.DurationField(default=timedelta(days=7)) # 定义训练过程中的参数 @classmethod def get_prophet_parameters(cls): parameters = super().get_prophet_parameters() parameters.update({ 'changepoint_prior_scale': 0.05, 'seasonality_mode': 'multiplicative' }) return parameters
- 予測モデルを実行する
Django Prophet モデルを作成した後、そのモデルを使用して予測を行うことができます。まず、Django プロジェクトの views.py ファイルに次のコードを追加する必要があります:
from django.http import JsonResponse from django_prophet.forecaster import ProphetForecaster from .models import TrafficPredictionModel # 运行预测模型 def predict_traffic(request): # 加载Django Prophet模型 model = TrafficPredictionModel.load_model() # 创建ProphetForecaster对象 forecaster = ProphetForecaster(model) # 运行预测 predictions = forecaster.predict() # 返回预测结果 return JsonResponse(predictions, safe=False)
次に、Django プロジェクトの urls.py ファイルに次のコードを追加する必要があります。
from django.urls import path from .views import predict_traffic urlpatterns = [ path('predict_traffic/', predict_traffic, name='predict_traffic'), ]
/predict_traffic/
にリクエストを送信することで、予測結果を取得できます。
結論
この記事では、Django Prophet を使用して渋滞を予測する方法を紹介します。まず交通流データを収集して準備し、次に Django Prophet モデルを作成し、そのモデルを使用して予測を行いました。 Django Prophet を使用することで、交通渋滞をよりよく理解して予測できるため、渋滞の問題を軽減するための適切な措置を講じることができます。
この記事が皆様のお役に立てば幸いです。
以上がDjango Prophet を使用して交通渋滞を予測するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

PythonとCにはそれぞれ独自の利点があり、選択はプロジェクトの要件に基づいている必要があります。 1)Pythonは、簡潔な構文と動的タイピングのため、迅速な開発とデータ処理に適しています。 2)Cは、静的なタイピングと手動メモリ管理により、高性能およびシステムプログラミングに適しています。

PythonまたはCの選択は、プロジェクトの要件に依存します。1)迅速な開発、データ処理、およびプロトタイプ設計が必要な場合は、Pythonを選択します。 2)高性能、低レイテンシ、および緊密なハードウェアコントロールが必要な場合は、Cを選択します。

毎日2時間のPython学習を投資することで、プログラミングスキルを効果的に改善できます。 1.新しい知識を学ぶ:ドキュメントを読むか、チュートリアルを見る。 2。練習:コードと完全な演習を書きます。 3。レビュー:学んだコンテンツを統合します。 4。プロジェクトの実践:実際のプロジェクトで学んだことを適用します。このような構造化された学習計画は、Pythonを体系的にマスターし、キャリア目標を達成するのに役立ちます。

2時間以内にPythonを効率的に学習する方法は次のとおりです。1。基本的な知識を確認し、Pythonのインストールと基本的な構文に精通していることを確認します。 2。変数、リスト、関数など、Pythonのコア概念を理解します。 3.例を使用して、基本的および高度な使用をマスターします。 4.一般的なエラーとデバッグテクニックを学習します。 5.リストの概念を使用したり、PEP8スタイルガイドに従ったりするなど、パフォーマンスの最適化とベストプラクティスを適用します。

Pythonは初心者やデータサイエンスに適しており、Cはシステムプログラミングとゲーム開発に適しています。 1. Pythonはシンプルで使いやすく、データサイエンスやWeb開発に適しています。 2.Cは、ゲーム開発とシステムプログラミングに適した、高性能と制御を提供します。選択は、プロジェクトのニーズと個人的な関心に基づいている必要があります。

Pythonはデータサイエンスと迅速な発展により適していますが、Cは高性能およびシステムプログラミングにより適しています。 1. Python構文は簡潔で学習しやすく、データ処理と科学的コンピューティングに適しています。 2.Cには複雑な構文がありますが、優れたパフォーマンスがあり、ゲーム開発とシステムプログラミングでよく使用されます。

Pythonを学ぶために1日2時間投資することは可能です。 1.新しい知識を学ぶ:リストや辞書など、1時間で新しい概念を学びます。 2。練習と練習:1時間を使用して、小さなプログラムを書くなどのプログラミング演習を実行します。合理的な計画と忍耐力を通じて、Pythonのコアコンセプトを短時間で習得できます。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)
