検索
ホームページバックエンド開発Python チュートリアルDjango Prophet と機械学習の統合: 時系列アルゴリズムを使用して予測精度を向上させるには?

Django Prophet与机器学习的集成:如何利用时间序列算法提升预测准确性?

Django Prophet と機械学習の統合: 時系列アルゴリズムを使用して予測精度を向上させる方法は?

はじめに:
テクノロジーの継続的な発展に伴い、機械学習は予測と分析の分野で重要なツールとなっています。ただし、時系列予測では、従来の機械学習アルゴリズムでは望ましい精度が達成できない場合があります。この目的を達成するために、Facebook は Prophet と呼ばれる時系列予測アルゴリズムをオープンソース化しました。これは、開発者が将来の時系列データをより正確に予測できるように、Django フレームワークと組み合わせて使用​​できます。

1. Django の概要
Django は Python ベースのオープンソース Web フレームワークで、開発者が効率的でスケーラブルな Web アプリケーションを迅速に構築できるように設計されています。 Web アプリケーション開発プロセスを簡素化するさまざまな便利なツールと機能を提供します。

2. Prophet の紹介
Prophet は、Facebook によって開始されたオープンソースの時系列予測アルゴリズムです。これは、季節性、傾向、休日などの要素を組み合わせた統計モデルに基づいており、将来の時系列データを効率的かつ正確に予測します。従来の機械学習アルゴリズムと比較して、Prophet は季節性や傾向が明らかな時系列データの処理に適しています。

3. Django Prophet の統合
Prophet を Django と統合するには、必要なソフトウェア パッケージをインストールし、いくつかのコード サンプルを記述する必要があります。統合の具体的な手順は次のとおりです。

  1. 必要なソフトウェア パッケージをインストールする
    まず、Django と Prophet をインストールする必要があります。コマンド ラインで次のコマンドを実行します。
pip install django
pip install fbprophet
  1. Django プロジェクトの作成
    新しい Django プロジェクトを作成し、新しいアプリケーションを追加します。コマンド ラインで次のコマンドを実行します。
django-admin startproject myproject
cd myproject
python manage.py startapp myapp
  1. データ準備
    myapp ディレクトリに新しいファイル data.py を作成し、その中で準備します。シリーズデータ。たとえば、日付と売上の 2 つの列のデータを含む sales.csv という名前のファイルを作成できます。
日期,销售额
2022-01-01,1000
2022-01-02,1200
2022-01-03,800
...
  1. データの前処理
    myapp/views.py では、Pandas を使用してデータ ファイルを読み取り、変換などの前処理操作を実行できます。 date 列を Pandas の Datetime 形式に変換します。
import pandas as pd

def preprocess_data():
    df = pd.read_csv('sales.csv')
    df['日期'] = pd.to_datetime(df['日期'])
    return df
  1. Prophet モデルのトレーニングと予測
  2. 次に、Prophet モデルをトレーニングし、予測を行うためのコードを記述する必要があります。
    from fbprophet import Prophet
    
    def train_and_predict(df):
        model = Prophet()
        model.fit(df)
        future = model.make_future_dataframe(periods=30)  # 预测未来30天
        forecast = model.predict(future)
        return forecast

  1. Django のビューとテンプレートmyapp/views.py で、新しいビュー関数を作成し、preprocess_data()を呼び出します。 train_and_predict()
  2. 関数。

from django.shortcuts import render
from .data import preprocess_data, train_and_predict

def forecast_view(request):
    df = preprocess_data()
    forecast = train_and_predict(df)
    context = {'forecast': forecast}
    return render(request, 'myapp/forecast.html', context)
myapp/templates/myapp/ ディレクトリに新しい HTML テンプレート ファイル forecast.html

を作成し、その中に予測結果を表示します。
    <html>
    <body>
        <h1 id="销售额预测结果">销售额预测结果</h1>
        <table>
            <tr>
                <th>日期</th>
                <th>预测销售额</th>
                <th>上界</th>
                <th>下界</th>
            </tr>
            {% for row in forecast.iterrows %}
            <tr>
                <td>{{ row[1]['ds'] }}</td>
                <td>{{ row[1]['yhat'] }}</td>
                <td>{{ row[1]['yhat_upper'] }}</td>
                <td>{{ row[1]['yhat_lower'] }}</td>
            </tr>
            {% endfor %}
        </table>
    </body>
    </html>

  1. URL ルーティングの構成myproject/urls.py に URL ルーティング構成を追加し、forecast_view
  2. を URL にバインドします。

from django.urls import path
from myapp.views import forecast_view

urlpatterns = [
    path('forecast/', forecast_view, name='forecast'),
]
この時点で、Django Prophet の統合プロセスは完了しました。ここで、Django サーバーを実行し、ブラウザで http://localhost:8000/forecast/

にアクセスして、売上予測の結果を確認します。


結論:

この記事では、Django フレームワークを使用して Prophet 時系列予測アルゴリズムを統合し、予測精度を向上させる方法を紹介します。 Prophet と Django を組み合わせることで、開発者は時系列データをより簡単に処理および分析し、正確な予測結果を導き出すことができます。同時に、この記事では、読者がこの統合プロセスをよりよく理解し、適用できるようにするためのコード例も提供します。この記事が時系列予測ソリューションを探している開発者に役立つことを願っています。 ###

以上がDjango Prophet と機械学習の統合: 時系列アルゴリズムを使用して予測精度を向上させるには?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Python vs. C:メモリ管理とコントロールPython vs. C:メモリ管理とコントロールApr 19, 2025 am 12:17 AM

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングのためのPython:詳細な外観科学コンピューティングのためのPython:詳細な外観Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonとC:適切なツールを見つけるPythonとC:適切なツールを見つけるApr 19, 2025 am 12:04 AM

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

データサイエンスと機械学習のためのPythonデータサイエンスと機械学習のためのPythonApr 19, 2025 am 12:02 AM

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境