Python でスチューデント化残差を計算するにはどうすればよいですか?
スチューデント化残差は、データ内の潜在的な外れ値を特定するために回帰分析でよく使用されます。外れ値は、データの全体的な傾向から大きく異なる点であり、近似されたモデルに大きな影響を与える可能性があります。外れ値を特定して分析することで、データの根本的なパターンをより深く理解し、モデルの精度を向上させることができます。この記事では、スチューデント化残差とそれを Python で実装する方法について詳しく見ていきます。
スチューデント化残差とは何ですか?
「スチューデント化残差」という用語は、標準偏差を推定値で割った特定のクラスの残差を指します。回帰分析の残差は、応答変数の観測値とモデルによって生成された期待値との差を表します。近似モデルに大きな影響を与える可能性のあるデータ内の外れ値を見つけるために、スチューデント化残差が使用されました。
通常、スチューデント化残差の計算には次の式が使用されます -
リーリーここで、「残差」は観測された応答値と期待される応答値の差を指し、「残差標準偏差」は残差標準偏差の推定値を指し、「hii」は各データ ポイントの値を指します。要素。
Python を使用してスチューデント化残差を計算する
statsmodels パッケージを使用して、Python でスチューデント化残差を計算できます。例として、次のことを考えてみましょう -
###文法### リーリーここで、OLSResults は、statsmodels の ols() メソッドを使用して近似された線形モデルを指します。
リーリーここで、「評価」と「スコア」は単純な線形回帰を指します。
###アルゴリズム###
numpy、pandas、Statsmodel API をインポートします。
データセットを作成します。
データセットに対して単純な線形回帰モデルを実行します。
スチューデント化残差を計算します。
スチューデント化された残差を出力します。
-
###例###
これは、scikit-posthocs ライブラリを使用してダンのテストを実行するデモンストレーションです -
リーリー 次に、statsmodels OLS クラスを使用して線形回帰モデルを作成します -
outlier test() メソッドを使用すると、データセット内の各観測値のスチューデント化残差を DataFrame で生成できます -
リーリー ###出力### リーリースチューデント化された残差に基づいて予測子の値を迅速にプロットすることもできます -
###文法### リーリーここでは、matpotlib ライブラリを使用して、color = 'black'、lifestyle = '--' でグラフを描画します
###アルゴリズム###
matplotlib の pyplot ライブラリをインポートします
予測子の値を定義する
スチューデント化残差を定義する
予測変数とスチューデント化残差の散布図を作成する
- ###例### リーリー ###出力### ###結論は###
- 考えられるデータ外れ値を特定して評価します。スチューデント化残差を調べると、データの全体的な傾向から大きく逸脱している点を見つけて、それらが近似モデルに影響を与える理由を調査できます。重要な観測値の特定 スチューデント化された残差を使用して、近似されたモデルに大きな影響を与える影響力のあるデータを発見および評価できます。レバレッジの高いスポットを探してください。スチューデント化残差を使用して、高いてこ比ポイントを特定できます。レバレッジは、適合モデルに対する特定の点の影響の尺度です。全体として、スチューデント化残差を使用すると、回帰モデルの分析とパフォーマンスの向上に役立ちます。
以上がPython でスチューデント化残差を計算するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

メモ帳++7.3.1
使いやすく無料のコードエディター

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境
