検索
ホームページテクノロジー周辺機器AIトヨタ・リサーチ・インスティテュートは、手動コーディングの必要性を排除し、触覚を利用して新しいスキルを効率的に学習するロボット AI 戦略を披露

トヨタ・リサーチ・インスティテュートは、手動コーディングの必要性を排除し、触覚を利用して新しいスキルを効率的に学習するロボット AI 戦略を披露

書き直す必要があるのは: スマートデバイス

書き直す必要があるコンテンツは次のとおりです: コンピレーション | 陳家輝

書き直す必要がある内容は次のとおりです: 編集者 | Xu Shan

書き直す必要があるのは次のとおりです: 9 月 21 日のスマート デバイス ニュース、The Verge によると、トヨタ研究所 (TRI) は、「ロボット幼稚園」で画期的な生成 AI 技術、ロボットの動作モデルの開発に成功しました。器用なスキル。このロボットの行動モデルは AI の普及戦略に基づいており、新しいスキルを数十回デモンストレーションした後に新しいスキルを学習できます。

このロボット動作モデルを使用すると、ロボットは一貫性があり、再現性があり、高性能の結果を生み出すことができます。さらに、ロボットは非常に迅速に学習して生成するため、手動コーディングやコーディング エラーの修正の必要性がなくなり、ロボットの実用性が向上し、ロボットの大規模動作モデル (LBM) の構築に向けた一歩を踏み出すことができます。

ロボットは学校に通い、ロボットの行動モデルを模倣することで 60 以上の難しいスキルを習得することもできます。

トヨタの公式ウェブサイトの発表によると、これまでロボットに新しい動作を教える技術は遅くて非効率で、一般にタスクを実行する際には制約条件が多く、実行されるタスクも非常に具体的かつ詳細なものでした。ロボット工学の専門家は、ロボットに新しい動作を追加するために、複雑なコードの作成に多くの時間を費やし、場合によってはコード内のエラーを絶えず修正します。

さて、ロボットの動作モデルがあります。研究者らは、接触がこのロボットの行動モデルの重要な要素であると考えています。彼らはロボットに親指サイズの触覚センサーを搭載し、ロボットが接触を通じて感知して学習できるようにし、人間と同じようにさまざまな複雑なタスクをより簡単に実行できるようにしました。 The Vergeによると、研究者らは「ロボット幼稚園」でロボットに朝食の作り方を教えたという。

「ロボット幼稚園」の仕組みは、最初に「教師」が一連のスキルを実演し、次にロボットのモデルがバックグラウンドで数時間学習し、最後にロボットが新しい作業行動を正常に形成するというものです。トヨタ研究所の器用操作研究室のマネージャーであるベン・バーフフィールド氏は、午後にロボットを教え、一晩学習させ、翌朝新しい動作を確認することがよくあると語った。

これまで研究者らは、ロボット動作モデルを使用して、液体を注ぐ、道具を使う、変形可能な物体の操作など、60以上の難しいスキルを習得するロボットの訓練に成功してきました。そして、2024 年末までにこの数を 1,000 アイテムに増やすことを目指しています。

トヨタ・リサーチ・インスティテュートは、手動コーディングの必要性を排除し、触覚を利用して新しいスキルを効率的に学習するロボット AI 戦略を披露▲液体を撹拌するロボット(出典:トヨタ公式サイト)

2. 独立した観察と新しいスキルの学習により、ロボットの大規模な行動モデルが作成されます

現在のロボット動作モデルの開発に続き、トヨタ研究所の研究者たちはロボットの大規模な動作モデルの作成にも挑戦しています。トヨタ研究所のロボット研究担当副所長であるラス・テドレーク氏は、大規模な行動モデルは、観察を通じて学習し、これまで教えられたことのない新しいスキルを実行できるという点で大規模な言語モデルに似ていると述べた。

Googleは実は、AI学習モデルロボット「Transformer RT-2」の開発において、同様の技術を研究している。トヨタの研究者のアプローチと同様に、彼らのロボットは、自身が獲得した経験を利用してタスクの実行方法を推論します。理論的には、最終的には、AI で訓練されたロボットに、「こぼれたものを掃除する」などの具体的な行動指示がなくても、タスクを完了するための一般的な指示が与えられる可能性があります。

New York Times によると、Google にはロボットの研究開発においてやるべきことがまだたくさんあります。同時にタイムズ紙は、研究作業は「時間がかかり、骨の折れる」ことが多く、十分なトレーニング データを提供することは、AI モデルをトレーニングするためにインターネットからデータをダウンロードするよりも難しいことも指摘しました。

結論: ロボットは触覚を獲得してスキルの学習速度を高め、将来的にはロボットが独自に新しいスキルを開発できるようになる可能性があります

トヨタ研究所のロボット動作モデルは、ロボットに触覚を与えることができ、これまで手作業でコーディングやエラー発見を行っていた訓練用ロボットと比べ、新モデルでは労力が軽減されるだけでなく、作業効率も向上します。ロボットが新しいスキルを学習する速度により、ロボットは人々がより多くのことを、より速く、より良くできるよう支援できるようになります。

トヨタ研究所の研究者らはロボットの大規模行動モデルを構築しており、グーグルも同様の技術の開発を試みていると述べた。研究機関やテクノロジー企業の継続的な探求により、将来的にはロボットの大規模な行動モデルが実現され、ロボットが観察して新しいスキルを自主的に開発できるようになる可能性があります。

書き換えられた内容は次のとおりです: 出典: The Verge

以上がトヨタ・リサーチ・インスティテュートは、手動コーディングの必要性を排除し、触覚を利用して新しいスキルを効率的に学習するロボット AI 戦略を披露の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は搜狐で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
あなたは無知のベールの後ろに職場AIを構築する必要がありますあなたは無知のベールの後ろに職場AIを構築する必要がありますApr 29, 2025 am 11:15 AM

ジョン・ロールズの独創的な1971年の著書「正義の理論」で、彼は私たちが今日のAIデザインの核となり、意思決定を使用するべきであるという思考実験を提案しました:無知のベール。この哲学は、公平性を理解するための簡単なツールを提供し、リーダーがこの理解を使用してAIを公平に設計および実装するための青写真を提供します。 あなたが新しい社会のルールを作っていると想像してください。しかし、前提があります。この社会でどのような役割を果たすかは事前にわかりません。過半数または限界少数派に属している、金持ちまたは貧弱、健康、または障害者になることがあります。この「無知のベール」の下で活動することで、ルールメーカーが自分自身に利益をもたらす決定を下すことができません。それどころか、人々はより公衆を策定する意欲があります

決定、決定…実用的な応用AIの次のステップ決定、決定…実用的な応用AIの次のステップApr 29, 2025 am 11:14 AM

ロボットプロセスオートメーション(RPA)を専門とする多くの企業は、繰り返しタスクを自動化するためのボットを提供しています。 一方、プロセスマイニング、オーケストレーション、インテリジェントドキュメント処理スペシャル

エージェントが来ています - 私たちがAIパートナーの隣ですることについてもっとエージェントが来ています - 私たちがAIパートナーの隣ですることについてもっとApr 29, 2025 am 11:13 AM

AIの未来は、単純な単語の予測と会話シミュレーションを超えて動いています。 AIエージェントは出現しており、独立したアクションとタスクの完了が可能です。 このシフトは、AnthropicのClaudeのようなツールですでに明らかです。 AIエージェント:研究a

共感がAI主導の未来におけるリーダーのコントロールよりも重要である理由共感がAI主導の未来におけるリーダーのコントロールよりも重要である理由Apr 29, 2025 am 11:12 AM

急速な技術の進歩は、仕事の未来に関する将来の見通しの視点を必要とします。 AIが単なる生産性向上を超えて、私たちの社会構造の形成を開始するとどうなりますか? Topher McDougalの今後の本、Gaia Wakes:

製品分類のためのAI:マシンは税法を習得できますか?製品分類のためのAI:マシンは税法を習得できますか?Apr 29, 2025 am 11:11 AM

多くの場合、Harmonized System(HS)などのシステムからの「HS 8471.30」などの複雑なコードを含む製品分類は、国際貿易と国内販売に不可欠です。 これらのコードは、すべてのINVに影響を与える正しい税申請を保証します

データセンターの要求は、気候技術のリバウンドを引き起こす可能性がありますか?データセンターの要求は、気候技術のリバウンドを引き起こす可能性がありますか?Apr 29, 2025 am 11:10 AM

データセンターと気候技術投資におけるエネルギー消費の将来 この記事では、AIが推進するデータセンターのエネルギー消費の急増と気候変動への影響を調査し、この課題に対処するための革新的なソリューションと政策の推奨事項を分析します。 エネルギー需要の課題:大規模で超大規模なデータセンターは、数十万の普通の北米の家族の合計に匹敵する巨大な力を消費し、新たなAIの超大規模なセンターは、これよりも数十倍の力を消費します。 2024年の最初の8か月で、Microsoft、Meta、Google、Amazonは、AIデータセンターの建設と運用に約1,250億米ドルを投資しました(JP Morgan、2024)(表1)。 エネルギー需要の成長は、挑戦と機会の両方です。カナリアメディアによると、迫り来る電気

AIとハリウッドの次の黄金時代AIとハリウッドの次の黄金時代Apr 29, 2025 am 11:09 AM

生成AIは、映画とテレビの制作に革命をもたらしています。 LumaのRay 2モデル、滑走路のGen-4、OpenaiのSora、GoogleのVEO、その他の新しいモデルは、前例のない速度で生成されたビデオの品質を向上させています。これらのモデルは、複雑な特殊効果と現実的なシーンを簡単に作成できます。短いビデオクリップやカメラ認知モーション効果も達成されています。これらのツールの操作と一貫性を改善する必要がありますが、進歩の速度は驚くべきものです。 生成ビデオは独立した媒体になりつつあります。アニメーション制作が得意なモデルもあれば、実写画像が得意なモデルもあります。 AdobeのFireflyとMoonvalleyのMAであることは注目に値します

ChatGptはゆっくりとAIの最大のYES-MANになりますか?ChatGptはゆっくりとAIの最大のYES-MANになりますか?Apr 29, 2025 am 11:08 AM

ChatGptユーザーエクスペリエンスは低下します:それはモデルの劣化ですか、それともユーザーの期待ですか? 最近、多数のCHATGPT有料ユーザーがパフォーマンスの劣化について不満を述べています。 ユーザーは、モデルへの応答が遅く、答えが短い、助けの欠如、さらに多くの幻覚を報告しました。一部のユーザーは、ソーシャルメディアに不満を表明し、ChatGptは「お世辞になりすぎて」、重要なフィードバックを提供するのではなく、ユーザービューを検証する傾向があることを指摘しています。 これは、ユーザーエクスペリエンスに影響を与えるだけでなく、生産性の低下やコンピューティングリソースの無駄など、企業の顧客に実際の損失をもたらします。 パフォーマンスの劣化の証拠 多くのユーザーは、特にGPT-4などの古いモデル(今月末にサービスから廃止される)で、ChatGPTパフォーマンスの大幅な分解を報告しています。 これ

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境