ホームページ >Java >&#&チュートリアル >Javaを使用してグラフの最小スパニングツリーアルゴリズムを実装する方法
Java を使用してグラフの最小スパニング ツリー アルゴリズムを実装する方法
概念の紹介:
最小スパニング ツリー (MST) とは、重み付けされた有向グラフまたは無向グラフを使用して、グラフ内のすべての頂点を含み、重みの合計が最小となるツリーを見つけます。最小スパニング ツリー アルゴリズムは数多くありますが、最も古典的な 2 つのアルゴリズムは、Prim のアルゴリズムと Kruskal のアルゴリズムです。
Prim アルゴリズム:
Prim アルゴリズムは、頂点から開始し、最小スパニング ツリー全体が生成されるまで徐々に拡張するポイントベースの貪欲アルゴリズムです。以下は、Java を使用して Prim のアルゴリズムを実装するためのサンプル コードです:
import java.util.Arrays; public class PrimAlgorithm { // 表示无穷大 private static final int INF = Integer.MAX_VALUE; public static void primMST(int[][] graph) { int vertices = graph.length; // 创建一个数组用来保存最小生成树的顶点 int[] parent = new int[vertices]; // 创建一个数组用来保存每个顶点与最小生成树的最小权值 int[] key = new int[vertices]; // 创建一个数组用来标记顶点是否已经加入最小生成树 boolean[] mstSet = new boolean[vertices]; // 初始化key数组和mstSet数组的值 Arrays.fill(key, INF); Arrays.fill(mstSet, false); //将第一个顶点加入最小生成树 key[0] = 0; parent[0] = -1; for (int count = 0; count < vertices - 1; count++) { // 选择key值最小的顶点 int minKey = getMinKey(key, mstSet); mstSet[minKey] = true; // 更新与该顶点相邻的顶点的key值 for (int v = 0; v < vertices; v++) { if (graph[minKey][v] != 0 && !mstSet[v] && graph[minKey][v] < key[v]) { parent[v] = minKey; key[v] = graph[minKey][v]; } } } // 输出最小生成树 printMST(parent, graph); } // 获得key值最小的顶点 private static int getMinKey(int[] key, boolean[] mstSet) { int minKey = INF, minIndex = -1; for (int v = 0; v < key.length; v++) { if (!mstSet[v] && key[v] < minKey) { minKey = key[v]; minIndex = v; } } return minIndex; } // 输出最小生成树 private static void printMST(int[] parent, int[][] graph) { System.out.println("Edge Weight"); for (int i = 1; i < graph.length; i++) { System.out.println(parent[i] + " - " + i + " " + graph[i][parent[i]]); } } public static void main(String[] args) { int[][] graph = {{0, 2, 0, 6, 0}, {2, 0, 3, 8, 5}, {0, 3, 0, 0, 7}, {6, 8, 0, 0, 9}, {0, 5, 7, 9, 0}}; primMST(graph); } }
Kruskal アルゴリズム:
Kruskal アルゴリズムは、エッジに基づく貪欲なアルゴリズムです。重みの小さいエッジから順にエッジを選択し、重みの大きいエッジのみを選択します。最小スパニング ツリー全体が生成されるまで、ループ エッジは生成されません。以下は、Java を使用して Kruskal のアルゴリズムを実装するためのサンプル コードです:
import java.util.*; class Edge implements Comparable<Edge> { int src, dest, weight; public int compareTo(Edge compareEdge) { return this.weight - compareEdge.weight; } } class KruskalAlgorithm { public List<Edge> kruskalMST(List<Edge> edges, int vertices) { List<Edge> result = new ArrayList<>(); Collections.sort(edges); int[] parent = new int[vertices]; for (int i = 0; i < vertices; i++) { parent[i] = i; } int count = 0, i = 0; while (count < vertices - 1) { Edge currentEdge = edges.get(i); int x = find(parent, currentEdge.src); int y = find(parent, currentEdge.dest); if (x != y) { result.add(currentEdge); union(parent, x, y); count++; } i++; } return result; } private int find(int[] parent, int vertex) { if (parent[vertex] != vertex) { parent[vertex] = find(parent, parent[vertex]); } return parent[vertex]; } private void union(int[] parent, int x, int y) { int xSet = find(parent, x); int ySet = find(parent, y); parent[xSet] = ySet; } public static void main(String[] args) { int vertices = 4; List<Edge> edges = new ArrayList<>(); edges.add(new Edge(0, 1, 10)); edges.add(new Edge(0, 2, 6)); edges.add(new Edge(0, 3, 5)); edges.add(new Edge(1, 3, 15)); edges.add(new Edge(2, 3, 4)); KruskalAlgorithm kruskal = new KruskalAlgorithm(); List<Edge> result = kruskal.kruskalMST(edges, vertices); System.out.println("Edge Weight"); for (Edge edge : result) { System.out.println(edge.src + " - " + edge.dest + " " + edge.weight); } } }
上記は、Java を使用して Prim のアルゴリズムと Kruskal のアルゴリズムを実装するためのサンプル コードです。どちらも最小スパニング ツリー アルゴリズムを実装するための古典的な方法です。グラフの。これらのコードを学習して理解することで、Java を使用してグラフの最小スパニング ツリー アルゴリズムを実装する方法をよりよく理解し、習得することができます。
以上がJavaを使用してグラフの最小スパニングツリーアルゴリズムを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。