ホームページ >Java >&#&チュートリアル >Javaを使用してKruskalアルゴリズムを実装する方法
Java を使用して Kruskal アルゴリズムを実装する方法
Kruskal アルゴリズムは、最小スパニング ツリー問題を解決するために一般的に使用されるアルゴリズムで、エッジをエントリ ポイントとして使用します。最小のスパニング ツリーを徐々に構築します。この記事では、Java を使用して Kruskal のアルゴリズムを実装する方法を詳しく説明し、具体的なコード例を示します。
アルゴリズム原理
Kruskal アルゴリズムの基本原理は、すべてのエッジを重みに従って小さいものから大きいものまでソートし、小さいものから大きいものへ順番にエッジを選択することです。サイクルを形成できません。具体的な実装手順は次のとおりです。
import java.util.*; class Edge implements Comparable<Edge> { int src, dest, weight; public int compareTo(Edge edge) { return this.weight - edge.weight; } } class Subset { int parent, rank; } class Graph { int V, E; Edge[] edges; public Graph(int v, int e) { V = v; E = e; edges = new Edge[E]; for (int i = 0; i < e; ++i) edges[i] = new Edge(); } int find(Subset[] subsets, int i) { if (subsets[i].parent != i) subsets[i].parent = find(subsets, subsets[i].parent); return subsets[i].parent; } void union(Subset[] subsets, int x, int y) { int xroot = find(subsets, x); int yroot = find(subsets, y); if (subsets[xroot].rank < subsets[yroot].rank) subsets[xroot].parent = yroot; else if (subsets[xroot].rank > subsets[yroot].rank) subsets[yroot].parent = xroot; else { subsets[yroot].parent = xroot; subsets[xroot].rank++; } } void KruskalMST() { Edge[] result = new Edge[V]; int e = 0; int i = 0; for (i = 0; i < V; ++i) result[i] = new Edge(); Arrays.sort(edges); Subset[] subsets = new Subset[V]; for (i = 0; i < V; ++i) subsets[i] = new Subset(); for (int v = 0; v < V; ++v) { subsets[v].parent = v; subsets[v].rank = 0; } i = 0; while (e < V - 1) { Edge next_edge = edges[i++]; int x = find(subsets, next_edge.src); int y = find(subsets, next_edge.dest); if (x != y) { result[e++] = next_edge; union(subsets, x, y); } } System.out.println("Following are the edges in the constructed MST:"); int minimumCost = 0; for (i = 0; i < e; ++i) { System.out.println(result[i].src + " -- " + result[i].dest + " == " + result[i].weight); minimumCost += result[i].weight; } System.out.println("Minimum Cost Spanning Tree: " + minimumCost); } } public class KruskalAlgorithm { public static void main(String[] args) { int V = 4; int E = 5; Graph graph = new Graph(V, E); graph.edges[0].src = 0; graph.edges[0].dest = 1; graph.edges[0].weight = 10; graph.edges[1].src = 0; graph.edges[1].dest = 2; graph.edges[1].weight = 6; graph.edges[2].src = 0; graph.edges[2].dest = 3; graph.edges[2].weight = 5; graph.edges[3].src = 1; graph.edges[3].dest = 3; graph.edges[3].weight = 15; graph.edges[4].src = 2; graph.edges[4].dest = 3; graph.edges[4].weight = 4; graph.KruskalMST(); } }
上記のコードは、単純なグラフを実装します。クラス (Graph)、エッジ クラス (Edge) と共用体検索クラス (Subset) を含みます。 main 関数では、グラフ オブジェクトを作成し、エッジを追加し、KruskalMST() メソッドを呼び出して最小スパニング ツリーを取得します。
Following are the edges in the constructed MST: 2 -- 3 == 4 0 -- 3 == 5 0 -- 1 == 10 Minimum Cost Spanning Tree: 19
これは、構築された最小のスパニング ツリーには 3 つのエッジが含まれていることを意味します。の重さの合計は 19 です。
概要:
この記事では、Java を使用して Kruskal アルゴリズムを実装する方法を詳細に紹介し、具体的なコード例を添付しました。この記事が、皆さんが Kruskal アルゴリズムをよりよく理解し、応用できるようになれば幸いです。
以上がJavaを使用してKruskalアルゴリズムを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。