検索
ホームページバックエンド開発C++有向重み付きグラフで、正確に k 個のエッジを含む最短パスを見つけます。

有向重み付きグラフで、正確に k 個のエッジを含む最短パスを見つけます。

調整重み付きグラフでは、正確に k 個のエッジを持つ最短パスを見つける問題には、正確に k 個のエッジをナビゲートするときに最小の重みを持つパスを決定することが含まれます。これは、考えられるすべての方法で最小限の重みを保存する 3D フレームワークの採用など、動的プログラミング戦略を採用することによって実現されます。計算は頂点とエッジで繰り返され、各ステップで最小重みが調整されます。正確に k 個のエッジを持つすべての可能な方法を考慮することにより、計算では、グラフ内に k 個のエッジを持つ最も限定された方法を区別できます。

使用説明書

  • 単純な再帰的メソッド

  • エッジ制約のあるダイクストラのアルゴリズム

単純な再帰的方法

単純な再帰的手法は、複雑な問題をより小さなサブ問題に分解し、それらを再帰的に解決することを含む、問題解決のための重要かつ明確な戦略となる可能性があります。このアプローチでは、基本ケースに到達するまで、作業自体が複数回呼び出され、サブ問題を調査します。それにもかかわらず、二重にカウントしたり、サブ問題をカバーしたりするため、より大きな問題の場合は無駄になる可能性があります。メモリやエネルギープログラミングなどの最適化方法が必要です。だまされやすい再帰的メソッドは入手して実装するのが簡単ですが、時間の複雑さが指数関数的に増加する可能性があります。これは、小規模な問題を解決するため、またはより最適な計算の開始点としてよく使用されます。

###アルゴリズム###

    グラフ、ソース頂点 u、ターゲット頂点 v、およびエッジの数 k を入力として受け取る作業最短パス (グラフ、u、v、k) を表します。
  • 基本的な状況を確認してください:
  • a. k と u が v と均衡する場合に返します (この場合、エッジは許可されないため)。
  • ######二番目。 k が 1 で、グラフ内の u と v の間にエッジがある場合、その重みが返されます。

  • c. k が 0 以下の場合は、無制限を返します (負またはゼロのエッジは許可されないため)。

  • 無限変数 res を初期化して、最短パス距離を保存します。

  • グラフは次のようにすべての頂点を反復する必要があります:

  • a. u と i が u または v まで上昇しない場合、u から i へのエッジが存在します:

  • shortestPath を再帰的に呼び出します。ここで、i はモダンなソース頂点、v はターゲット頂点、k−1 は残りのエッジの数です。

  • 返された結果が無限でない場合、res は res の最小値、現在のエッジと再帰結果の重みにアップグレードされます。

  • k 個のエッジを正確に分離する最も限定的な方法として res の値を返します。

  • ###例### リーリー ###出力### リーリー

    エッジ制約のあるダイクストラのアルゴリズム

  • エッジ制約を備えたダイクストラのアルゴリズムは、ソース頂点とグラフ上の他のすべての頂点の間の最短パスを特定するグラフ走査計算です。これは、最大または最小のエッジの重みなど、グラフのエッジの制限または制約を考慮します。この計算では、必要な頂点ラインが保持され、削除する頂点が最も少ないものを繰り返し選択します。この時点で、より短いパスが見つかった場合は、隣接する頂点間の距離を広げることで隣接する頂点を緩和します。この準備は、すべての頂点が訪問されるまで続きます。エッジ コマンドを使用したダイクストラのアルゴリズムは、最も制限された方法を見つけながら、選択した方法が必要なエッジ制約を満たすことを保証します。 ###アルゴリズム###

次のパラメータを使用してダイクストラのアートワークを作成します

グラフ: 頂点とエッジを含む入力グラフ

ソース: 最も制限されたパスの開始頂点

制約: エッジの制限または障害物
  • 消滅した頂点のセットと需要ラインを初期化して、頂点とその距離を保存します。

  • 削除クラスターを作成し、ソース頂点を除くすべての頂点の削除を終了可能に設定します。ソース頂点は 0 に設定されます。

    ソース頂点を距離に応じて目的の行に配置します。

    需要パイプラインはパージできませんが、次のことを行ってください:
  • エリミネーション数が最も少ない頂点を目的のキューからデキューします。
  • 頂点が現在アクセスされていない場合は、
  • 訪問済みとしてマークします。
  • モダン頂点の隣接する各頂点:
  • エッジ バリアを適用して、エッジを考慮できるかどうかを判断します。
  • エッジの重みと制約を考慮して、フィード頂点から隣接する頂点までの未使用の距離を計算します。
  • 現在の区切り文字が最新の区切り文字より短い場合は、区切り文字の配列を改善します。
  • 未使用の距離にある隣接する頂点を目的の行にキューに入れます。
  • すべての頂点に到達した後、別のクラスターには、供給頂点からエッジ制約を満たす各頂点までの最大短距離が含まれます。
  • 個々のクラスターを結果として返します。

示例

#include <iostream>
#include <vector>
#include <limits>

struct Edge {
    int destination;
    int weight;
};

void dijkstra(const std::vector<std::vector<Edge>>& graph, int source, std::vector<int>& distance) {
    int numVertices = graph.size();
    std::vector<bool> visited(numVertices, false);
    distance.resize(numVertices, std::numeric_limits<int>::max());
    distance[source] = 0;

    for (int i = 0; i < numVertices - 1; ++i) {
        int minDistance = std::numeric_limits<int>::max();
        int minVertex = -1;

        for (int v = 0; v < numVertices; ++v) {
            if (!visited[v] && distance[v] < minDistance) {
                minDistance = distance[v];
                minVertex = v;
            }
        }

        if (minVertex == -1)
            break;

        visited[minVertex] = true;

        for (const auto& edge : graph[minVertex]) {
            int destination = edge.destination;
            int weight = edge.weight;

            if (!visited[destination] && distance[minVertex] != std::numeric_limits<int>::max() &&
                distance[minVertex] + weight < distance[destination]) {
                distance[destination] = distance[minVertex] + weight;
            }
        }
    }
}

int main() {
    int numVertices = 4;
    int source = 0;
    std::vector<std::vector<Edge>> graph(numVertices);

    // Add edges to the graph (destination, weight)
    graph[0] = {{1, 10}, {2, 3}};
    graph[1] = {{2, 1}, {3, 7}};
    graph[2] = {{3, 6}};

    std::vector<int> distance;
    dijkstra(graph, source, distance);

    // Print the shortest distances from the source vertex
    std::cout << "Shortest distances from vertex " << source << ":\n";
    for (int i = 0; i < numVertices; ++i) {
        std::cout << "Vertex " << i << ": " << distance[i] << '\n';
    }

    return 0;
}

输出

Shortest distances from vertex 0:
Vertex 0: 0
Vertex 1: 10
Vertex 2: 3
Vertex 3: 9

结论

本文概述了两个重要的计算,以帮助理解协调和加权图表中的大多数问题。它阐明了易受骗的递归方法和带有边缘限制的 Dijkstra 计算。轻信递归方法包括递归地研究具有精确 k 个边的所有可能的方式,以发现最有限的方式。 Dijkstra 的边命令式计算采用了所需的线和面积规则,成功地找出了图表中从供给顶点到所有不同顶点的最大受限方式。本文包含了计算的具体说明,并给出了测试代码来说明其用法.

以上が有向重み付きグラフで、正確に k 個のエッジを含む最短パスを見つけます。の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はtutorialspointで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Cの継続的な使用:その持久力の理由Cの継続的な使用:その持久力の理由Apr 11, 2025 am 12:02 AM

C継続的な使用の理由には、その高性能、幅広いアプリケーション、および進化する特性が含まれます。 1)高効率パフォーマンス:Cは、メモリとハードウェアを直接操作することにより、システムプログラミングと高性能コンピューティングで優れたパフォーマンスを発揮します。 2)広く使用されている:ゲーム開発、組み込みシステムなどの分野での輝き。3)連続進化:1983年のリリース以来、Cは競争力を維持するために新しい機能を追加し続けています。

CとXMLの未来:新たなトレンドとテクノロジーCとXMLの未来:新たなトレンドとテクノロジーApr 10, 2025 am 09:28 AM

CとXMLの将来の開発動向は次のとおりです。1)Cは、プログラミングの効率とセキュリティを改善するためのC 20およびC 23の標準を通じて、モジュール、概念、CORoutinesなどの新しい機能を導入します。 2)XMLは、データ交換および構成ファイルの重要なポジションを引き続き占有しますが、JSONとYAMLの課題に直面し、XMLSchema1.1やXpath3.1の改善など、より簡潔で簡単な方向に発展します。

最新のCデザインパターン:スケーラブルで保守可能なソフトウェアの構築最新のCデザインパターン:スケーラブルで保守可能なソフトウェアの構築Apr 09, 2025 am 12:06 AM

最新のCデザインモデルは、C 11以降の新機能を使用して、より柔軟で効率的なソフトウェアを構築するのに役立ちます。 1)ラムダ式とstd :: functionを使用して、オブザーバーパターンを簡素化します。 2)モバイルセマンティクスと完全な転送を通じてパフォーマンスを最適化します。 3)インテリジェントなポインターは、タイプの安全性とリソース管理を保証します。

Cマルチスレッドと並行性:並列プログラミングのマスタリングCマルチスレッドと並行性:並列プログラミングのマスタリングApr 08, 2025 am 12:10 AM

cマルチスレッドと同時プログラミングのコア概念には、スレッドの作成と管理、同期と相互排除、条件付き変数、スレッドプーリング、非同期プログラミング、一般的なエラーとデバッグ技術、パフォーマンスの最適化とベストプラクティスが含まれます。 1)STD ::スレッドクラスを使用してスレッドを作成します。この例は、スレッドが完了する方法を作成し、待つ方法を示しています。 2)共有リソースを保護し、データ競争を回避するために、STD :: MutexおよびSTD :: LOCK_GUARDを使用するための同期と相互除外。 3)条件変数は、std :: condition_variableを介したスレッド間の通信と同期を実現します。 4)スレッドプールの例は、スレッドプールクラスを使用してタスクを並行して処理して効率を向上させる方法を示しています。 5)非同期プログラミングはSTD :: ASを使用します

Cディープダイブ:メモリ管理、ポインター、およびテンプレートの習得Cディープダイブ:メモリ管理、ポインター、およびテンプレートの習得Apr 07, 2025 am 12:11 AM

Cのメモリ管理、ポインター、テンプレートはコア機能です。 1。メモリ管理は、新規および削除を通じてメモリを手動で割り当ててリリースし、ヒープとスタックの違いに注意を払います。 2。ポインターにより、メモリアドレスを直接操作し、注意して使用します。スマートポインターは管理を簡素化できます。 3.テンプレートは、一般的なプログラミングを実装し、コードの再利用性と柔軟性を向上させ、タイプの派生と専門化を理解する必要があります。

Cおよびシステムプログラミング:低レベルのコントロールとハードウェアの相互作用Cおよびシステムプログラミング:低レベルのコントロールとハードウェアの相互作用Apr 06, 2025 am 12:06 AM

Cは、ハードウェアに近い制御機能とオブジェクト指向プログラミングの強力な機能を提供するため、システムプログラミングとハードウェアの相互作用に適しています。 1)cポインター、メモリ管理、ビット操作などの低レベルの機能、効率的なシステムレベル操作を実現できます。 2)ハードウェアの相互作用はデバイスドライバーを介して実装され、Cはこれらのドライバーを書き込み、ハードウェアデバイスとの通信を処理できます。

Cによるゲーム開発:高性能ゲームとシミュレーションの構築Cによるゲーム開発:高性能ゲームとシミュレーションの構築Apr 05, 2025 am 12:11 AM

Cは、ハードウェア制御と効率的なパフォーマンスに近いため、高性能のゲームおよびシミュレーションシステムの構築に適しています。 1)メモリ管理:手動制御により、断片化が減少し、パフォーマンスが向上します。 2)コンパイル時間の最適化:インライン関数とループ拡張は、ランニング速度を改善します。 3)低レベルの操作:ハードウェアへの直接アクセス、グラフィックスおよび物理コンピューティングの最適化。

C言語ファイルの操作問題の背後にある真実C言語ファイルの操作問題の背後にある真実Apr 04, 2025 am 11:24 AM

ファイルの操作の問題に関する真実:ファイルの開きが失敗しました:不十分な権限、間違ったパス、およびファイルが占有されます。データの書き込みが失敗しました:バッファーがいっぱいで、ファイルは書き込みできず、ディスクスペースが不十分です。その他のFAQ:遅いファイルトラバーサル、誤ったテキストファイルエンコード、およびバイナリファイルの読み取りエラー。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。