この記事では、BEV Sketch レイアウトを通じてマルチビューのストリートビュー画像を正確に生成する方法を紹介します
自動運転の分野では、画像合成が広く使用されています。下流の知覚を改善する タスクのパフォーマンスを改善する
コンピュータ ビジョンの分野において、知覚モデルのパフォーマンスを向上させるための長年の研究課題は、画像を合成することによってそれを達成することです。マルチビューカメラを使用するビジョン中心の自動運転システムでは、一部のロングテールシーンが収集できないため、この問題はより顕著になります。図1(a)、既存の生成方法は、セマンティックセグメンテーションスタイルのBEV構造を生成ネットワークに入力し、合理的な多視点画像を出力します。シーンレベルの指標のみで評価すると、既存の方法はフォトリアリスティックなストリートビュー画像を合成できるように見えます。しかし、ズームインすると、正確なオブジェクトレベルの詳細を生成できないことがわかりました。この図では、最先端の生成アルゴリズムによくある間違い、つまり、生成された車両がターゲットの 3D バウンディング ボックスと比較して完全に反対方向を向いていることを示しています。さらに、セマンティックセグメンテーション方式の BEV 構造の編集は多くの人手を必要とする困難な作業であるため、図 1(b) に示すように、より洗練された背景と前景の形状を提供する BEVControl と呼ばれる 2 段階の手法を提案します。 。 BEVControl はスケッチ スタイルの BEV 構造入力をサポートしており、迅速かつ簡単な編集が可能です。さらに、BEVControl は視覚的な一貫性を 2 つのサブ目標に分解します: コントローラーを介したストリート ビューと鳥瞰図間の幾何学的一貫性、コーディネーターを介したストリート ビュー間の外観の一貫性
BEVControl は、一連のモジュールで構成される、UNet 構造の生成されたネットワークです。各モジュールには、コントローラーとコーディネーターという 2 つの要素があります。
入力: BEV スケッチ、マルチビュー ノイズ イメージ、および簡単に編集できるテキスト プロンプト; 出力: 生成されたマルチビュー イメージ。
- #メソッドの詳細
- コーディネーター: 新しいクロスビューおよびクロスエレメント アテンション メカニズムを利用して、ビュー間のコンテキスト インタラクションを実現し、外観の一貫性を保ったストリート ビュー機能を出力します。
提案された評価指標
- 最近のストリート ビュー画像生成作業では、シーン レベルの指標 (FID、道路 MIoU、など)品質。
- 以下の図に示すように、これらの指標のみを使用して生成ネットワークの真の生成能力を評価することは不可能であることがわかりました。報告された定性的および定量的結果は、両方のグループが同様の FID スコアを持つストリート ビュー画像を生成するものの、前景と背景をきめ細かく制御する機能が大きく異なることを示しています。
そこで、生成されたネットワークの制御能力を細かく測定するための評価指標セットを提案します。
- 定量的結果
- BEVControl と NuScenes 検証セットでの最先端のメソッドの比較。
定性的結果
デモ効果
##書き換える必要がある内容は次のとおりです。 参照
書き換える必要がある内容は次のとおりです。 [1] Swerdlow A、Xu R、Zhou B。鳥瞰図レイアウト[ J]. arXiv プレプリント arXiv:2301.04634, 2023.
以上がより詳細な背景と前景の制御、より高速な編集: BEVControl の 2 段階のアプローチの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

MakridakisM-Competitions系列(分别称为M4和M5)分别在2018年和2020年举办(M6也在今年举办了)。对于那些不了解的人来说,m系列得比赛可以被认为是时间序列生态系统的一种现有状态的总结,为当前得预测的理论和实践提供了经验和客观的证据。2018年M4的结果表明,纯粹的“ML”方法在很大程度上胜过传统的统计方法,这在当时是出乎意料的。在两年后的M5[1]中,最的高分是仅具有“ML”方法。并且所有前50名基本上都是基于ML的(大部分是树型模型)。这场比赛看到了LightG

在一项最新的研究中,来自UW和Meta的研究者提出了一种新的解码算法,将AlphaGo采用的蒙特卡洛树搜索算法(Monte-CarloTreeSearch,MCTS)应用到经过近端策略优化(ProximalPolicyOptimization,PPO)训练的RLHF语言模型上,大幅提高了模型生成文本的质量。PPO-MCTS算法通过探索与评估若干条候选序列,搜索到更优的解码策略。通过PPO-MCTS生成的文本能更好满足任务要求。论文链接:https://arxiv.org/pdf/2309.150

编辑|X传统意义上,发现所需特性的分子过程一直是由手动实验、化学家的直觉以及对机制和第一原理的理解推动的。随着化学家越来越多地使用自动化设备和预测合成算法,自主研究设备越来越接近实现。近日,来自MIT的研究人员开发了由集成机器学习工具驱动的闭环自主分子发现平台,以加速具有所需特性的分子的设计。无需手动实验即可探索化学空间并利用已知的化学结构。在两个案例研究中,该平台尝试了3000多个反应,其中1000多个产生了预测的反应产物,提出、合成并表征了303种未报道的染料样分子。该研究以《Autonom

作者|陈旭鹏编辑|ScienceAI由于神经系统的缺陷导致的失语会导致严重的生活障碍,它可能会限制人们的职业和社交生活。近年来,深度学习和脑机接口(BCI)技术的飞速发展为开发能够帮助失语者沟通的神经语音假肢提供了可行性。然而,神经信号的语音解码面临挑战。近日,约旦大学VideoLab和FlinkerLab的研究者开发了一个新型的可微分语音合成器,可以利用一个轻型的卷积神经网络将语音编码为一系列可解释的语音参数(例如音高、响度、共振峰频率等),并通过可微分神经网络将这些参数合成为语音。这个合成器

昨天,Meta开源专攻代码生成的基础模型CodeLlama,可免费用于研究以及商用目的。CodeLlama系列模型有三个参数版本,参数量分别为7B、13B和34B。并且支持多种编程语言,包括Python、C++、Java、PHP、Typescript(Javascript)、C#和Bash。Meta提供的CodeLlama版本包括:代码Llama,基础代码模型;代码羊-Python,Python微调版本;代码Llama-Instruct,自然语言指令微调版就其效果来说,CodeLlama的不同版

编辑|紫罗可合成分子的化学空间是非常广阔的。有效地探索这个领域需要依赖计算筛选技术,比如深度学习,以便快速地发现各种有趣的化合物。将分子结构转换为数字表示形式,并开发相应算法生成新的分子结构是进行化学发现的关键。最近,英国格拉斯哥大学的研究团队提出了一种基于电子密度训练的机器学习模型,用于生成主客体binders。这种模型能够以简化分子线性输入规范(SMILES)格式读取数据,准确率高达98%,从而实现对分子在二维空间的全面描述。通过变分自编码器生成主客体系统的电子密度和静电势的三维表示,然后通

一个普通人用一台手机就能制作电影特效的时代已经来了。最近,一个名叫Simulon的3D技术公司发布了一系列特效视频,视频中的3D机器人与环境无缝融合,而且光影效果非常自然。呈现这些效果的APP也叫Simulon,它能让使用者通过手机摄像头的实时拍摄,直接渲染出CGI(计算机生成图像)特效,就跟打开美颜相机拍摄一样。在具体操作中,你要先上传一个3D模型(比如图中的机器人)。Simulon会将这个模型放置到你拍摄的现实世界中,并使用准确的照明、阴影和反射效果来渲染它们。整个过程不需要相机解算、HDR

人类和四足机器人之间简单有效的交互是创造能干的智能助理机器人的途径,其昭示着这样一个未来:技术以超乎我们想象的方式改善我们的生活。对于这样的人类-机器人交互系统,关键是让四足机器人有能力响应自然语言指令。近来大型语言模型(LLM)发展迅速,已经展现出了执行高层规划的潜力。然而,对LLM来说,理解低层指令依然很难,比如关节角度目标或电机扭矩,尤其是对于本身就不稳定、必需高频控制信号的足式机器人。因此,大多数现有工作都会假设已为LLM提供了决定机器人行为的高层API,而这就从根本上限制了系统的表现能


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。
