今日は、Google Research とプリンストン大学の研究者が共同研究した論文「REACT: Combining Reasoning and Behavior in Language Models」を紹介します。彼らは、言語モデルにおける推論と動作を組み合わせる可能性を模索しながら、この論文を発表しました。大規模言語モデル (LLM) の推論機能とアクション機能は別々に研究されてきましたが、これら 2 つの機能が 1 つのシステムに統合されたのは今回が初めてです。したがって、この論文は非常に重要だと思います。 ReAct フレームワークを使用すると、仮想エージェントが Web データベースや SQL データベースへの接続などのさまざまなツールを使用できるようになり、推論とアクションに事実上無制限の拡張性が提供されます。タスク指向のアクションと次のステップに関する推論のシームレスな組み合わせ。この能力により、私たちは新しいタスクを迅速に学習し、信頼できる意思決定を下せるだけでなく、予期せぬ状況に適応することができます。 ReAct の目標は、言語モデルでこの相乗効果を再現し、推論ステップとタスク固有のアクションを交互に生成できるようにすることです
#ReAct の仕組み
#ReAct は、大規模な言語モデルに、特定のタスクに対する口頭推論の履歴ステップとアクションを生成するよう促します。これらのプロンプトは、モデルの思考とアクション生成をガイドする少数のコンテキスト例で構成されています。状況に応じた例を下の図に示します。これらの例は、アイデアを生成し、アクションを実行し、アクションの結果を観察するという循環プロセスを通じてエージェントをガイドします。 ReAct では、推論トレースとアクションを組み合わせることで、モデルが動的推論を実行できるようになり、高レベルの計画を生成したり、外部環境と対話して追加情報を収集したりできます
アプリケーションと結果
研究者らは、質問応答、事実検証、テキストベースのゲーム、Web ページなど、さまざまな言語推論や意思決定タスクに ReAct を適用しました。ナビゲーション。結果は傑出しており、ReAct は解釈可能性と信頼性の点で他の最先端のベースラインを常に上回っています
質問応答や事実確認タスクにおいて、ReAct はインタラクションを活用し、問題をうまく克服しています推論における一般的な幻覚と誤り伝播の問題。人間がタスクを解決する方法と同様のステップが生成され、推論の痕跡がないベースライン モデルよりも解釈が容易です。インタラクティブな意思決定ベンチマークでは、ReAct は、推論、アクション、観察のステップが絡み合っているにもかかわらず、1 つまたは 2 つのコンテキスト例
だけでも、模倣学習および強化学習手法を大幅に上回り、信頼性を向上させます。しかし、この構造は推論ステップの柔軟性も制限するため、一部のタスクでは思考連鎖プロンプトよりも推論エラー率が高くなります。
推論とアクションの重要性
研究者らは、さまざまなタスクにおける推論と行動の重要性を理解するために、アブレーション実験も実施しました。彼らは、ReAct の内部推論と外部動作を組み合わせると、推論やアクションのみに焦点を当てたベースラインよりも一貫してパフォーマンスが優れていることを発見しました。これは、より効果的な意思決定のために 2 つのプロセスを統合することの価値を強調しています
今後の方向性
ReAct は良好な結果を達成しましたが、まだ改善の余地があります。研究者らは、より多くのタスクをトレーニングおよび操作できるように ReAct をスケールアップし、強化学習などの補完的なパラダイムと組み合わせることを推奨しています。さらに、人間が注釈を付けたより多くのデータを使用してモデルを微調整して、パフォーマンスをさらに向上させることもできます。
#結論ReAct は、よりスマートな を開発しています。より一般的な AI システムに向けた大きな一歩であり、Langchain ライブラリの非常に便利なプロキシ関数もサポートしています。言語モデルで推論と動作を組み合わせることで、さまざまなタスクにわたってパフォーマンスの向上が実証されていると同時に、解釈可能性と信頼性も強化されています。人工知能が進化し続けるにつれて、推論と行動の統合は、より有能で適応性のある人工知能システムを作成する上で重要な役割を果たします
論文へのリンクを提供してください:
以上がよりスマートな AI の実現: 言語モデルで推論と動作を統合する ReAct テクノロジーの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

科学者は、彼らの機能を理解するために、人間とより単純なニューラルネットワーク(C. elegansのものと同様)を広く研究してきました。 ただし、重要な疑問が生じます。新しいAIと一緒に効果的に作業するために独自のニューラルネットワークをどのように適応させるのか

GoogleのGemini Advanced:Horizonの新しいサブスクリプションティア 現在、Gemini Advancedにアクセスするには、1か月あたり19.99ドルのGoogle One AIプレミアムプランが必要です。 ただし、Android Authorityのレポートは、今後の変更を示唆しています。 最新のGoogle p

高度なAI機能を取り巻く誇大宣伝にもかかわらず、エンタープライズAIの展開内に大きな課題が潜んでいます:データ処理ボトルネック。 CEOがAIの進歩を祝う間、エンジニアはクエリの遅い時間、過負荷のパイプライン、

ドキュメントの取り扱いは、AIプロジェクトでファイルを開くだけでなく、カオスを明確に変えることです。 PDF、PowerPoint、Wordなどのドキュメントは、あらゆる形状とサイズでワークフローをフラッシュします。構造化された取得

Googleのエージェント開発キット(ADK)のパワーを活用して、実際の機能を備えたインテリジェントエージェントを作成します。このチュートリアルは、ADKを使用して会話エージェントを構築し、GeminiやGPTなどのさまざまな言語モデルをサポートすることをガイドします。 w

まとめ: Small Language Model(SLM)は、効率のために設計されています。それらは、リソース不足、リアルタイム、プライバシーに敏感な環境の大手言語モデル(LLM)よりも優れています。 特にドメインの特異性、制御可能性、解釈可能性が一般的な知識や創造性よりも重要である場合、フォーカスベースのタスクに最適です。 SLMはLLMSの代替品ではありませんが、精度、速度、費用対効果が重要な場合に理想的です。 テクノロジーは、より少ないリソースでより多くを達成するのに役立ちます。それは常にドライバーではなく、プロモーターでした。蒸気エンジンの時代からインターネットバブル時代まで、テクノロジーの力は、問題の解決に役立つ範囲にあります。人工知能(AI)および最近では生成AIも例外ではありません

コンピュータービジョンのためのGoogleGeminiの力を活用:包括的なガイド 大手AIチャットボットであるGoogle Geminiは、その機能を会話を超えて拡張して、強力なコンピュータービジョン機能を網羅しています。 このガイドの利用方法については、

2025年のAIランドスケープは、GoogleのGemini 2.0 FlashとOpenaiのO4-Miniの到着とともに感動的です。 数週間離れたこれらの最先端のモデルは、同等の高度な機能と印象的なベンチマークスコアを誇っています。この詳細な比較


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









