検索
ホームページバックエンド開発Python チュートリアルPythonプログラミングでBaidu OCRインターフェースのドッキングと画像テキスト抽出機能を実装
PythonプログラミングでBaidu OCRインターフェースのドッキングと画像テキスト抽出機能を実装Aug 26, 2023 pm 05:28 PM
Pythonプログラミング画像テキスト抽出百度 ocr インターフェース

PythonプログラミングでBaidu OCRインターフェースのドッキングと画像テキスト抽出機能を実装

Python プログラミングは、画像テキスト抽出機能を実現するために Baidu OCR インターフェイス ドッキングを実装します。

はじめに:
深層学習の急速な発展に伴い、OCR (光学式文字認識、光学式文字認識) 技術は、コンピュータ ビジョンの分野で徐々に人気のあるアプリケーションの 1 つになってきました。 Baidu AI オープン プラットフォームが提供する OCR インターフェイスは、開発者に便利で高速なテキスト認識機能を提供します。この記事では、Python プログラミングを組み合わせて、Baidu OCR インターフェイスとインターフェイスして画像テキストの抽出機能を実現する方法を説明します。

ステップ 1: Baidu AI オープン プラットフォーム アカウントの申請
まず、Baidu AI オープン プラットフォームの公式 Web サイト (https://ai.baidu.com/) でアカウントを登録する必要があります。登録が完了したら、API KeyとSecret Keyを取得するためのアプリケーションを作成する必要があります。

ステップ 2: 対応する Python ライブラリをインストールする
プログラミングには Python を使用する必要があります。次のライブラリがインストールされていることを確認してください:

  • requests: HTTP の送信に使用されます。リクエスト
  • base64: 画像を Base64 エンコーディングに変換するために使用されます
  • hashlib: MD5 署名の生成に使用されます
  • time: タイムスタンプの生成に使用されます
  • json: API によって返された JSON データを解析する

これらのライブラリは次のコマンドでインストールできます:

pip install requests

ステップ 3: コーディングの実装

次に、次のように記述します。 Python このコードは画像テキスト抽出関数を実装します。まず、必要なライブラリをインポートする必要があります:

import requests
import base64
import hashlib
import time
import json

次に、API キー、秘密キー、その他の情報を保存するためにいくつかの変数を定義する必要があります:

API_KEY = 'your_api_key'
SECRET_KEY = 'your_secret_key'
OCR_URL = 'https://aip.baidubce.com/rest/2.0/ocr/v1/general_basic'

次に、画像を Base64 でエンコードされた文字列に変換するために使用される function :

def image_to_base64(image_path):
    with open(image_path, 'rb') as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

次に、API リクエストの署名情報を生成する関数を記述する必要があります:

def generate_sign(url, params, timestamp, secret_key):
    sorted_params = sorted(params.items(), key=lambda x: x[0])
    sorted_params.append(('timestamp', str(timestamp)))
    raw_sign = ''.join([x[0] + '=' + x[1] for x in sorted_params]) + secret_key
    sign = hashlib.md5(raw_sign.encode('utf-8')).hexdigest()
    return url + '?' + '&'.join([x[0] + '=' + x[1] for x in sorted_params]) + '&sign=' + sign

最後に、 main 関数 Baidu OCR インターフェイスを呼び出して画像テキストの抽出機能を実現するには:

def ocr(image_path):
    access_token = get_access_token(API_KEY, SECRET_KEY)
    url_params = {
        'access_token': access_token,
        'image': image_to_base64(image_path)
    }
    timestamp = int(time.time())
    request_url = generate_sign(OCR_URL, url_params, timestamp, SECRET_KEY)
    response = requests.post(request_url)
    result = response.json()
    if 'words_result' in result:
        for word in result['words_result']:
            print(word['words'])
    else:
        print('Error occurred: ' + result['error_msg'])

ステップ 4: コードを実行します
これで、コードを実行して画像内のテキスト情報を抽出できます:

ocr('image.jpg')

実行する前に、「image.jpg」をテキストを抽出する画像のパスに置き換えてください。

結論:
Baidu OCR インターフェースのドッキングは Python プログラミングを通じて実現され、画像テキスト抽出機能が実現されます。これにより、開発者は Baidu AI プラットフォームの OCR テクノロジーを簡単かつ迅速に使用して、さまざまなテキスト認識アプリケーション シナリオを実現できます。文書のスキャン、検証コードの認識、フォームの入力のいずれであっても、OCR の機能を利用することで、ワードプロセッサと分析をより効率的に実行できます。この記事のデモンストレーションを通じて、読者が OCR の動作原理をより深く理解し、実際のプロジェクトでより複雑な OCR アプリケーションを実装できることを願っています。

以上がPythonプログラミングでBaidu OCRインターフェースのドッキングと画像テキスト抽出機能を実装の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python中的残差分析技巧Python中的残差分析技巧Jun 10, 2023 am 08:52 AM

Python是一种广泛使用的编程语言,其强大的数据分析和可视化功能使其成为数据科学家和机器学习工程师的首选工具之一。在这些应用中,残差分析是一种常见的技术,用于评估模型的准确性和识别任何模型偏差。在本文中,我们将介绍Python中使用残差分析技巧的几种方法。理解残差在介绍Python中的残差分析技巧之前,让我们先了解什么是残差。在统计学中,残差是实际观测值与

AssertionError:如何解决Python断言错误?AssertionError:如何解决Python断言错误?Jun 25, 2023 pm 11:07 PM

Python中的断言(assert)是程序员用于调试代码的一种有用工具。它用于验证程序的内部状态是否满足预期,并在这些条件为假时引发一个断言错误(AssertionError)。在开发过程中,测试和调试阶段都使用断言来检查代码的状态和预期结果是否相符。本文将讨论AssertionError的原因、解决方法以及如何在代码中正确使用断言。断言错误的原因断言错误通

Python开发漏洞扫描器的方法Python开发漏洞扫描器的方法Jul 01, 2023 am 08:10 AM

如何通过Python开发漏洞扫描器概述在当今互联网安全威胁增加的环境下,漏洞扫描器成为了保护网络安全的重要工具。Python是一种流行的编程语言,简洁易读且功能强大,适合开发各种实用工具。本文将介绍如何使用Python开发漏洞扫描器,为您的网络提供实时保护。步骤一:确定扫描目标在开发漏洞扫描器之前,您需要确定要扫描的目标。这可以是您自己的网络或任何您有权限测

Python中的分层抽样技巧Python中的分层抽样技巧Jun 10, 2023 pm 10:40 PM

Python中的分层抽样技巧抽样是统计学中常用的一种数据采集方法,它可以从数据集中选择一部分样本进行分析,以此推断出整个数据集的特征。在大数据时代,数据量巨大,使用全样本进行分析既耗费时间又不够经济实际。因此,选择合适的抽样方法可以提高数据分析效率。本文主要介绍Python中的分层抽样技巧。什么是分层抽样?在抽样中,分层抽样(stratifiedsampl

Python编程实战:利用百度地图API生成静态地图功能的方法Python编程实战:利用百度地图API生成静态地图功能的方法Jul 30, 2023 pm 09:05 PM

Python编程实战:利用百度地图API生成静态地图功能的方法导语:在现代社会中,地图已经成为人们生活中不可缺少的一部分。在使用地图时,我们常常需要获取特定区域的静态地图,以便在网页、移动应用或报告中进行展示。本文将介绍如何利用Python编程语言和百度地图API来生成静态地图,并提供相关的代码示例。一、准备工作要实现利用百度地图API生成静态地图的功能,我

如何在Python中使用支持向量聚类技术?如何在Python中使用支持向量聚类技术?Jun 06, 2023 am 08:00 AM

支持向量聚类(SupportVectorClustering,SVC)是一种基于支持向量机(SupportVectorMachine,SVM)的非监督学习算法,能够在无标签数据集中实现聚类。Python是一种流行的编程语言,具有丰富的机器学习库和工具包。本文将介绍如何在Python中使用支持向量聚类技术。一、支持向量聚类的原理SVC基于一组支持向

如何通过Python编写程序获取百度地图API中的地图瓦片?如何通过Python编写程序获取百度地图API中的地图瓦片?Jul 31, 2023 pm 04:21 PM

如何通过Python编写程序获取百度地图API中的地图瓦片?地图瓦片是构成地图的基本元素,通过将地图划分为小块独立的图像,可以实现更快速的地图加载和显示。百度地图API提供了丰富的地图瓦片数据,本文将介绍如何使用Python获取百度地图API中的地图瓦片,并给出代码示例。获取百度地图API的地图瓦片需要使用到该接口提供的密钥(ak),因此,首先需要在百度地图

Python编程解析百度地图API文档中的坐标转换功能Python编程解析百度地图API文档中的坐标转换功能Aug 01, 2023 am 08:57 AM

Python编程解析百度地图API文档中的坐标转换功能导读:随着互联网的快速发展,地图定位功能已经成为现代人生活中不可或缺的一部分。而百度地图作为国内最受欢迎的地图服务之一,提供了一系列的API供开发者使用。本文将通过Python编程,解析百度地图API文档中的坐标转换功能,并给出相应的代码示例。一、引言在开发中,我们有时会涉及到坐标的转换问题。百度地图AP

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

ドリームウィーバー CS6

ドリームウィーバー CS6

ビジュアル Web 開発ツール