ホームページ >バックエンド開発 >C++ >配列内の逆数を計算するためにマージ ソート アルゴリズムを使用して作成された C/C++ プログラム

配列内の逆数を計算するためにマージ ソート アルゴリズムを使用して作成された C/C++ プログラム

PHPz
PHPz転載
2023-08-25 19:33:281136ブラウズ

配列内の逆数を計算するためにマージ ソート アルゴリズムを使用して作成された C/C++ プログラム

配列の反転表現。配列をソートされた形式に変換するために必要な変更の数。配列がすでにソートされている場合、反転は 0 回必要ですが、その他の場合、配列が反転されると、反転の最大数が達成されます。

この問題を解決するために、マージ ソート方法に従って時間の複雑さを軽減し、分割統治アルゴリズムを使用します。

入力

A sequence of numbers. (1, 5, 6, 4, 20).

出力

数値を昇順に並べ替えるのに必要な反転回数。

Here the number of inversions are 2.
First inversion: (1, 5, 4, 6, 20)
Second inversion: (1, 4, 5, 6, 20)

Algorithm

merge(array, tempArray, left, middle, right)

Input - マージされた 2 つの配列、左、右と真ん中のインデックス。

出力 - 配列はソートされた順序でマージされます。

Begin
   i := left, j := mid, k := right
   count := 0
   while i <= mid -1 and j <= right, do
      if array[i] <= array[j], then
         tempArray[k] := array[i]
         increase i and k by 1
      else
         tempArray[k] := array[j]
         increase j and k by 1
         count := count + (mid - i)
   done
   while left part of the array has some extra element, do
      tempArray[k] := array[i]
      increase i and k by 1
   done
   while right part of the array has some extra element, do
      tempArray[k] := array[j]
      increase j and k by 1
   done
   return count
End

mergeSort(array, tempArray, left, right)

Input - 配列と一時配列が与えられた場合、配列の左と右のインデックス。

出力 - ソート後の逆順のペアの数。

Begin
   count := 0
   if right > left, then
      mid := (right + left)/2
      count := mergeSort(array, tempArray, left, mid)
      count := count + mergeSort(array, tempArray, mid+1, right)
      count := count + merge(array, tempArray, left, mid+1, right)
   return count
End

リアルタイム デモンストレーション

#include <iostream>
using namespace std;
int merge(int arr[], int temp[], int left, int mid, int right) {
   int i, j, k;
   int count = 0;
   i = left; //i to locate first array location
   j = mid; //i to locate second array location
   k = left; //i to locate merged array location
   while ((i <= mid - 1) && (j <= right)) {
      if (arr[i] <= arr[j]){ //when left item is less than right item
      temp[k++] = arr[i++];
      } else {
         temp[k++] = arr[j++];
         count += (mid - i); //find how many convertion is performed
      }
   }
   while (i <= mid - 1) //if first list has remaining item, add them in the list
      temp[k++] = arr[i++];
   while (j <= right) //if second list has remaining item, add them in the list
      temp[k++] = arr[j++];
   for (i=left; i <= right; i++)
      arr[i] = temp[i]; //store temp Array to main array
   return count;
}
int mergeSort(int arr[], int temp[], int left, int right){
   int mid, count = 0;
   if (right > left) {
      mid = (right + left)/2; //find mid index of the array
      count = mergeSort(arr, temp, left, mid); //merge sort left sub array
      count += mergeSort(arr, temp, mid+1, right); //merge sort right sub array
      count += merge(arr, temp, left, mid+1, right); //merge two sub arrays
   }
   return count;
}
int arrInversion(int arr[], int n) {
   int temp[n];
   return mergeSort(arr, temp, 0, n - 1);
}
int main() {
   int arr[] = {1, 5, 6, 4, 20};
   int n = 5;
   cout << "Number of inversions are "<< arrInversion(arr, n);
}

出力

Number of inversions are 2

以上が配列内の逆数を計算するためにマージ ソート アルゴリズムを使用して作成された C/C++ プログラムの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明:
この記事はtutorialspoint.comで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。