検索
ホームページバックエンド開発Python チュートリアル自動機械学習の Python に相当するコードの説明

自動機械学習の Python に相当するコードの説明

Aug 22, 2023 pm 08:25 PM
python自動化された機械学習同等のコードの説明

###############導入###

機械学習は急速に発展している分野であり、新しいテクノロジーやアルゴリズムが常に登場しています。ただし、機械学習モデルの作成と強化は、高度な専門知識を必要とする、時間のかかる困難な作業になる可能性があります。自動機械学習 (autoML とも呼ばれます) は、特徴量エンジニアリング、ハイパーパラメーター調整、モデル選択などの面倒なタスクの一部を自動化することで、機械学習モデルの作成と最適化のプロセスを簡素化することを目的としています。 自動機械学習の Python に相当するコードの説明

auto-sklearn は、Python で最も有名な機械学習ライブラリの 1 つである scikit-learn 上に構築された強力なオープンソースの自動機械学習フレームワークです。ベイジアン最適化とメタ学習を通じて、特定のデータセット上で潜在的な機械学習パイプラインを自動的に検索し、最適なモデルとハイパーパラメーターを自動的に特定します。このチュートリアルでは、インストール、データのインポート、データの準備、モデルの作成とトレーニング、モデルの効果の評価に関するガイダンスを含め、Python での Auto-sklearn の使用方法を紹介します。初心者でも Auto-sklearn を使用すると、強力な機械学習モデルを迅速かつ簡単に作成できます。

node-red でのエラーの処理方法

自動スクラーン

効率的なオープンソース ソフトウェア プログラム Auto-sklearn を使用して、機械学習モデルの作成と継続的な改善を自動化します。ベイズ最適化とメタ学習を使用して、特定のデータセットの理想的なモデルとハイパーパラメータを自動的に見つけます。メタ学習自体は、よく知られた機械学習プログラム scikit-learn に基づいています。

Autosklearn が分類および回帰問題のために作成したアプリケーションには、自然言語処理、画像分類、時系列予測などはほんのわずかしかありません。

ライブラリは、特徴量エンジニアリング、モデル選択、データ準備プロセスなど、潜在的な機械学習プロセスのコレクションを検索することによって動作します。ベイジアン最適化を使用してこの空間を効率的に検索し、メタ学習を通じて以前のテストから検索効率を継続的に向上させます。

さらに、Auto-sklearn は、動的統合選択、自動モデル統合、アクティブ学習などの一連の強力な機能も提供します。さらに、モデルの開発、テスト、トレーニングのための使いやすい API も提供します。

AutoML コード

Auto-sklearn を使用して、AutoML コードをさらに詳しく調べてみましょう。 scikit-learn の Digits データセット (手書きの数字のデータセット) を使用します。数字の写真から数字を予測することが目標です。コードは次のとおりです -

プログラム

の中国語訳は次のとおりです:

プログラム

リーリー ###出力### リーリー

コードの説明

このプログラムは、自動機械学習 (AutoML) を使用して、Auto-sklearn モジュールの使用を含め、MNIST データセットから手書きの数字を分類します。コードの概要は次のとおりです -

autosklearn.classification モジュールから AutoSklearnClassifier クラスをインポートします。このクラスには、使用される AutoML 分類モデルが含まれています。autosklearn.classification モジュールをインポートします。

sklearn.datasets からload_digits 関数をインポート: これにより、sklearn.datasets パッケージから MNIST データセットのload_digits 関数がインポートされます。

  • sklearnからモデルを選択してください。 MNIST データ セットは、ここでインポートされる sklearn.model 選択モジュールのトレーニング テスト分割関数を使用して、トレーニング セットとテスト セットに分割されます。

  • MNIST データセットがロードされ、入力特徴が X に保存され、対応するラベルが y に保存されます。 X, y =load_digits(return_X_y=True): これにより、MNIST データセットがロードされます。

  • XX トレーニング セット、セット、テスト セット、再現性を確保するためにランダム シードを 1 に設定

  • Automl は autosklearn.classification と同等です。 AutoSklearnClassifier (実行ごとの制限時間 = 30、このタスクの残り時間 = 180): MNIST データセットでトレーニングされた AutoML モデルを AutoSklearnClassifier クラスのインスタンスに形成します。実行あたりの時間制限は、個々のモデルが実行できる最大時間 (秒単位) を表し、このタスクの残り時間は AutoML プロセスが実行できる最大時間 (秒単位) を表します。
  • automl.fit 関数 (X train、y train) を使用して、トレーニング セット X train と関連ラベル Y train を通じて AutoSklearnClassifier モデルをトレーニングします。
  • accuracy:", print(X test, y test), automl.score これは、X テストおよび Y テスト関連ラベルでのパフォーマンスを評価した後、テスト セットでの AutoSklearnClassifier モデルの精度を決定します。このメソッドは、特定のデータセットに対するモデルの精度を示します。
  • 上記のコードは、特徴の選択、ハイパーパラメーターの調整、データの準備など、モデル構築プロセスのすべてのステップを自動化する機械学習テクノロジーである AutoML メソッドを実装しています。 AutoML を使用すると、専門家でなくても強力なモデルを作成できるため、機械学習モデルの作成に必要な手作業の量が削減されます。
  • まず、pandas、numpy、sklearn、tpot などの必要なライブラリをコードにインポートします。 Sklearn はデータの前処理、モデルの選択、評価などの機械学習タスクに使用され、Pandas はデータ操作に使用され、NumPy は数値計算に使用されます。 AutoML アルゴリズムを実装する主なライブラリは TPOT です。

    次に、pandas の read_csv 関数を使用してデータセットを読み込み、入力フィーチャと出力ラベルを異なる変数に個別に保存します。 「y」変数は出力のラベルを保持し、「X」変数は入力の特徴を格納します。

    データを適合させて機械学習モデルを生成するには、コードはまずデータセットを読み込み、次に TPOTRegressor クラスのインスタンスを作成します。 TPOTSRegressor クラスは TPOTBase クラスのサブクラスであり、遺伝的アルゴリズムを使用して機能を選択し、ハイパーパラメーターを調整します。 TPOTRegressor クラスは回帰問題を処理し、TPOTClassifier クラスは分類問題を処理します。

    Sklearn のトレーニング-テスト-分割メソッドを使用して、データ セットをトレーニング セットとテスト セットに分割します。機械学習では、データを 2 つのセット (モデルをフィッティングするためのトレーニング セットとモデルのパフォーマンスを評価するためのテスト セット) に分割するのが一般的です。

    データが分割されると、TPOTRegressor インスタンスの fit メソッドが呼び出され、トレーニング データに基づいてモデルが調整されます。 Fit テクノロジーでは、遺伝的アルゴリズムを使用して、特定のデータに対する特徴とハイパーパラメーターの最適なサブセットを見つけます。最適なモデルが返されます。

    コードは次に、スコアリング方法を使用して、テスト セットでのモデルのパフォーマンスを評価し、モデルの精度を決定します。精度スコアはモデルがデータにどの程度適合しているかを示し、値が 1 に近いほど適合度が高いことを示します。

    次に、エクスポート関数を使用して、最良のモデルがテスト セットの精度スコアとともに Python ファイルにエクスポートされます。

    ###結論は###

    要約すると、Auto-sklearn は、機械学習モデルの作成と改善のプロセスを簡素化する強力なライブラリです。特定のデータセットに最適なモデルとハイパーパラメーターを自動的に見つけることで、時間と労力を節約します。このチュートリアルでは、Python で Auto-sklearn を使用する方法について説明します。これには、Auto-sklearn のインストール、データのインポート、データの準備、モデルの作成とトレーニング、モデルのパフォーマンスの評価に関するガイダンスが含まれます。初心者でも Auto-sklearn を使用すると、強力な機械学習モデルを迅速かつ簡単に作成できます。

以上が自動機械学習の Python に相当するコードの説明の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はtutorialspointで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Pythonと時間:勉強時間を最大限に活用するPythonと時間:勉強時間を最大限に活用するApr 14, 2025 am 12:02 AM

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

Python:ゲーム、GUIなどPython:ゲーム、GUIなどApr 13, 2025 am 12:14 AM

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

ゼンドスタジオ 13.0.1

ゼンドスタジオ 13.0.1

強力な PHP 統合開発環境

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。