#1. 操作が混乱しやすい
このセクションでは、Python でのいくつかの紛らわしい操作を比較します。
#1.1 置換ありのランダム サンプリングと置換なしのランダム サンプリング
import random random.choices(seq, k=1) # 长度为k的list,有放回采样 random.sample(seq, k) # 长度为k的list,无放回采样
1.2 ラムダ関数のパラメーター
func = lambda y: x + y # x的值在函数运行时被绑定 func = lambda y, x=x: x + y # x的值在函数定义时被绑定
1.3 コピーとディープコピー
import copy y = copy.copy(x) # 只复制最顶层 y = copy.deepcopy(x) # 复制所有嵌套部分
変数エイリアスと組み合わせると、混乱が起こりやすくなります。
a = [1, 2, [3, 4]] # Alias. b_alias = a assert b_alias == a and b_alias is a # Shallow copy. b_shallow_copy = a[:] assert b_shallow_copy == a and b_shallow_copy is not a and b_shallow_copy[2] is a[2] # Deep copy. import copy b_deep_copy = copy.deepcopy(a) assert b_deep_copy == a and b_deep_copy is not a and b_deep_copy[2] is not a[2]
エイリアスの変更は元の変数に影響します。(浅い) コピーの要素は元のリストの要素のエイリアスですが、深いコピーは再帰的にコピーされます。コピーされた変更は、元の変数には影響しません。
2、常用工具
2.1 读写 CSV 文件
import csv # 无header的读写 with open(name, 'rt', encoding='utf-8', newline='') as f: # newline=''让Python不将换行统一处理 for row in csv.reader(f): print(row[0], row[1]) # CSV读到的数据都是str类型 with open(name, mode='wt') as f: f_csv = csv.writer(f) f_csv.writerow(['symbol', 'change']) # 有header的读写 with open(name, mode='rt', newline='') as f: for row in csv.DictReader(f): print(row['symbol'], row['change']) with open(name, mode='wt') as f: header = ['symbol', 'change'] f_csv = csv.DictWriter(f, header) f_csv.writeheader() f_csv.writerow({'symbol': xx, 'change': xx})
注意,当 CSV 文件过大时会报错:_csv.Error: field larger than field limit (131072),通过修改上限解决
import sys csv.field_size_limit(sys.maxsize)
csv 还可以读以 \t 分割的数据
f = csv.reader(f, delimiter='\t')
2.2 迭代器工具
itertools 中定义了很多迭代器工具,例如子序列工具:
import itertools itertools.islice(iterable, start=None, stop, step=None) # islice('ABCDEF', 2, None) -> C, D, E, F itertools.filterfalse(predicate, iterable) # 过滤掉predicate为False的元素 # filterfalse(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6 itertools.takewhile(predicate, iterable) # 当predicate为False时停止迭代 # takewhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 1, 4 itertools.dropwhile(predicate, iterable) # 当predicate为False时开始迭代 # dropwhile(lambda x: x < 5, [1, 4, 6, 4, 1]) -> 6, 4, 1 itertools.compress(iterable, selectors) # 根据selectors每个元素是True或False进行选择 # compress('ABCDEF', [1, 0, 1, 0, 1, 1]) -> A, C, E, F
序列排序:
sorted(iterable, key=None, reverse=False) itertools.groupby(iterable, key=None) # 按值分组,iterable需要先被排序 # groupby(sorted([1, 4, 6, 4, 1])) -> (1, iter1), (4, iter4), (6, iter6) itertools.permutations(iterable, r=None) # 排列,返回值是Tuple # permutations('ABCD', 2) -> AB, AC, AD, BA, BC, BD, CA, CB, CD, DA, DB, DC itertools.combinations(iterable, r=None) # 组合,返回值是Tuple itertools.combinations_with_replacement(...) # combinations('ABCD', 2) -> AB, AC, AD, BC, BD, CD
多个序列合并:
itertools.chain(*iterables) # 多个序列直接拼接 # chain('ABC', 'DEF') -> A, B, C, D, E, F import heapq heapq.merge(*iterables, key=None, reverse=False) # 多个序列按顺序拼接 # merge('ABF', 'CDE') -> A, B, C, D, E, F zip(*iterables) # 当最短的序列耗尽时停止,结果只能被消耗一次 itertools.zip_longest(*iterables, fillvalue=None) # 当最长的序列耗尽时停止,结果只能被消耗一次
2.3 计数器
计数器可以统计一个可迭代对象中每个元素出现的次数。
import collections # 创建 collections.Counter(iterable) # 频次 collections.Counter[key] # key出现频次 # 返回n个出现频次最高的元素和其对应出现频次,如果n为None,返回所有元素 collections.Counter.most_common(n=None) # 插入/更新 collections.Counter.update(iterable) counter1 + counter2; counter1 - counter2 # counter加减 # 检查两个字符串的组成元素是否相同 collections.Counter(list1) == collections.Counter(list2)
2.4 带默认值的 Dict
当访问不存在的 Key 时,defaultdict 会将其设置为某个默认值。
import collections collections.defaultdict(type) # 当第一次访问dict[key]时,会无参数调用type,给dict[key]提供一个初始值
2.5 有序 Dict
import collections collections.OrderedDict(items=None) # 迭代时保留原始插入顺序
3、高性能编程和调试
3.1 输出错误和警告信息
向标准错误输出信息
import sys sys.stderr.write('')
输出警告信息
import warnings warnings.warn(message, category=UserWarning) # category的取值有DeprecationWarning, SyntaxWarning, RuntimeWarning, ResourceWarning, FutureWarning
控制警告消息的输出
$ python -W all # 输出所有警告,等同于设置warnings.simplefilter('always') $ python -W ignore # 忽略所有警告,等同于设置warnings.simplefilter('ignore') $ python -W error # 将所有警告转换为异常,等同于设置warnings.simplefilter('error')
3.2 代码中测试
有时为了调试,我们想在代码中加一些代码,通常是一些 print 语句,可以写为:
# 在代码中的debug部分 if __debug__: pass
一旦调试结束,通过在命令行执行 -O 选项,会忽略这部分代码:
$ python -0 main.py
3.3 代码风格检查
使用 pylint 可以进行不少的代码风格和语法检查,能在运行之前发现一些错误
pylint main.py
3.4 代码耗时
耗时测试
$ python -m cProfile main.py
测试某代码块耗时
# 代码块耗时定义 from contextlib import contextmanager from time import perf_counter @contextmanager def timeblock(label): tic = perf_counter() try: yield finally: toc = perf_counter() print('%s : %s' % (label, toc - tic)) # 代码块耗时测试 with timeblock('counting'): pass
代码耗时优化的一些原则
コード全体ではなく、パフォーマンスのボトルネックが発生している場所の最適化に重点を置きます。 # グローバル変数の使用は避けてください。ローカル変数はグローバル変数よりも高速に検索され、関数内でグローバル変数を定義するコードの実行は通常 15% ~ 30% 高速になります。 #プロパティにアクセスするために . を使用しないでください。頻繁にアクセスされるクラスのメンバー変数 self.member をローカル変数に入れるには、from module import name を使用した方が高速です。 # 組み込みのデータ構造を使用してみてください。 str、list、set、dict などは C で実装されており、非常に高速に実行されます。 # 不要な中間変数の作成や copy.deepcopy() は避けてください。 a ':' b ':' c などの文字列連結では、大量の無駄な中間変数 ':',join([a 、b、c]) 効率ははるかに高くなります。さらに、文字列の連結が必要かどうかを考慮する必要があります。たとえば、print(':'.join([a, b, c])) は print(a, b, c, sep=':' より効率的ではありません) )。
以上がPythonの使い方Tips20選、まとめてみるのもおすすめ!の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

WebStorm Mac版
便利なJavaScript開発ツール
