検索
ホームページバックエンド開発Python チュートリアルPandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化


#今回は、Python を使用して 2022 年の世界上位 500 企業の情報データを分析します。 、見てください:

  • 上位 500 社はどの国に大まかに分布していますか?
  • 上位 500 社 中国企業とその国内各都市への分布状況
  • 上位 500 社の損益状況
  • ...
お役に立てば幸いです 、ご質問がある場合や改善したい場合は、編集者にプライベート メッセージを送信できます。

関連するライブラリ:

  • Pandas — データ処理

  • #Pyecharts — データ視覚化

#視覚化セクション:

  • ピクトグラム — PictorialBar

  • 棒グラフ — 棒

  • # 地図 — 地図

  • ##地理座標系 — 地理
  • #水球チャート — 液体
  • 極座標チャート — 極
  • ワード クラウド — WordCloud

1. モジュールのインポート

##
import pandas as pd 
from pyecharts.charts import Pie
from pyecharts.charts import Bar
from pyecharts.charts import Grid
from pyecharts.charts import Map
from pyecharts.charts import Geo
from pyecharts.charts import WordCloud
from pyecharts.charts import PictorialBar
from pyecharts.charts import Liquid
from pyecharts.charts import Polar
from pyecharts import options as opts
from pyecharts.commons.utils import JsCode


2. Pandas数据处理

2.1 读取数据 
df = pd.read_excel('2022年世界五百强排行榜.xlsx')
df.head(10)

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

2.2 查看数据信息 

df.info()

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

500条数据没有确缺失,不需要进行其他处理。


3. Pyecharts数据可视化

3.1 各国世界500强企业数量排名柱状图 
bar = (
    Bar(init_opts=opts.InitOpts(width='1000px', height='1000px',bg_color='#0d0735'))
    .add_xaxis(x_data)
    .add_yaxis("",y_data)
    .set_series_opts(label_opts=opts.LabelOpts(position="right",
                                              font_size=12,
                                              font_weight='bold',
                                              formatter='{c} 家'),
                    )
    .set_global_opts(
                    xaxis_opts=opts.AxisOpts(is_show=False,),
                    yaxis_opts=opts.AxisOpts(
                        axislabel_opts=opts.LabelOpts(font_size=13,color='#fff200'),
                        axistick_opts=opts.AxisTickOpts(is_show=False),
                        axisline_opts=opts.AxisLineOpts(is_show=False)
                    ),
                    title_opts=opts.TitleOpts(title="各国世界500强企业数量排名",pos_left='center',pos_top='1%',
                              title_textstyle_opts=opts.TextStyleOpts(font_size=22,color="#38d9a9")),
                    visualmap_opts=opts.VisualMapOpts(is_show=False, 
                                      min_=20,
                                      max_=150,
                                      is_piecewise=False,
                                      dimension=0,
                                      range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#f62336']
                                                     ),
                    )
    .reversal_axis()
)

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

  • 我国以145家世界500强企业高居榜首
  • 美国128家、日本47家位居二、三位
  • 亚洲方面还有韩国以18家的数量排名第六
3.2 各国世界500强企业数量排名TOP8极坐标图 
p = (
    Polar(init_opts=opts.InitOpts(width='1000px', height='800px', bg_color='#0d0735'))
    .add_schema(
        radiusaxis_opts=opts.RadiusAxisOpts(data=x_data[-8:], 
                                            type_='category'),
        angleaxis_opts=opts.AngleAxisOpts(
              is_clockwise=True, 
              is_scale=True,
              max_=150,
              axislabel_opts=opts.LabelOpts(font_size=14, color='#fff200'),
              axisline_opts=opts.AxisLineOpts(is_show=True,linestyle_opts=opts.LineStyleOpts(
                                                    width=2,type_='dashed',color='#e4e932')),
              splitline_opts=opts.SplitLineOpts(is_show=True,
                    linestyle_opts=opts.LineStyleOpts(type_='dashed', color='#9FC131')
                ),
             ),
    )
    .add('',y_data[-8:], type_='bar')
    .set_global_opts( 
        title_opts=opts.TitleOpts(title='各国世界500强企业数量排名TOP8',subtitle='制图@公众号:Python当打之年',pos_left='center',pos_top='1%',
            title_textstyle_opts=opts.TextStyleOpts(color='#38d9a9',font_size=20)
        ),
         visualmap_opts=opts.VisualMapOpts(max_=150, is_show = False, is_piecewise=True, split_number = 8, min_ = 10,
                                           range_color=['#203fb6', '#008afb', '#ffec4a', '#ff6611', '#f62336'] 
                                          ),
    )
)

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

3.3 各国世界500强企业数量占比饼状图

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

  • 我国世界500强企业有145家,占比高达29%,接近总量的1/3

  • ##米国が 24.8%、日本が 9.4%

# 3.4 各国のフォーチュン 500 企業数の上位 8 社のピクトグラム

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

##3.5 各国のフォーチュン 500 企業数の棒グラフ中国の各都市

## 国内面: Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

    私の国のフォーチュン 500 企業 145 社は基本的に第一線に基づく ほとんどの都市
  • 北京がフォーチュン 500 企業 54 社で第 1 位にランクされ、次に上海と深センがそれぞれ 12 社と 10 社となっています
  • 北京、上海、広州、深セン、中山、
  • 広州は 4 社でトップ 5 から外れ、7 位にランクされました

3.6 各国世界500强企业数量地图分布
m1 = (
    Map(init_opts=opts.InitOpts(width='1000px', height='500px',theme='dark',bg_color='#0d0735')) 
    .add('公司数量', 
         region_data, 
         "world", 
         is_map_symbol_show=False,
         is_roam=False, 
        )
    .set_series_opts(label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(
        legend_opts=opts.LegendOpts(is_show=False),
        visualmap_opts=opts.VisualMapOpts(is_show=True, 
                                          max_=150,
                                          min_=0,
                                          is_piecewise=True,
                                          split_number=10,
                                          pos_top='50%',
                                          pos_left='10%',
                                          range_color=['#9ecae1','#6baed6','#4292c6','#2171b5','#08519c','#08306b','#d4b9da','#c994c7','#df65b0','#e7298a','#ce1256','#980043','#67001f']
        ), 
    )
)

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

效果2:

3.7 中国世界500强企业数量占比水球图

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

3.8 世界500强企业公司名称词云
wd = WordCloud(init_opts=opts.InitOpts(width='1000px',height='600px',theme='dark',bg_color='#0d0735'))
wd.add('', 
       [list(z) for z in zip(x_data, y_data)],
      )
wd.set_global_opts(
        title_opts=opts.TitleOpts(
            title=""),
        tooltip_opts=opts.TooltipOpts(is_show=True),
    )
wd.render_notebook()

Pandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化

营收方面:

  • ウォルマートは営業利益 5,727 億 5,400 万ドルで第 1 位です。、アマゾンは営業利益 4,698 億 2,200 万ドルで第 2 位、そして私の国のステート グリッド コーポレーションは営業利益は 4,698 億 2,200 万米ドル。 :
    State Grid Co., Ltd. ( 3)、中国石油化工公司 (4)、中国石油化学公司 (5)、中国国家建設工程公司 (9)
##4.
オンライン実行アドレス

##スペースの都合上、コードの一部は表示されていません。
オンライン実行アドレス(ソースコードを含む)

##https://www.heywhale.com/mw/project/6318517d9b96502cad5c5ab0## ############################################

以上がPandas+Pyecharts | 2022 Fortune 500 データ分析の視覚化の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事はPython当打之年で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
Python vs. C:比較されたアプリケーションとユースケースPython vs. C:比較されたアプリケーションとユースケースApr 12, 2025 am 12:01 AM

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間のPython計画:現実的なアプローチ2時間のPython計画:現実的なアプローチApr 11, 2025 am 12:04 AM

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Python:主要なアプリケーションの調査Python:主要なアプリケーションの調査Apr 10, 2025 am 09:41 AM

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間でどのくらいのPythonを学ぶことができますか?2時間でどのくらいのPythonを学ぶことができますか?Apr 09, 2025 pm 04:33 PM

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?プロジェクトの基本と問題駆動型の方法で10時間以内にコンピューター初心者プログラミングの基本を教える方法は?Apr 02, 2025 am 07:18 AM

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...

中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?中間の読書にどこでもfiddlerを使用するときにブラウザによって検出されないようにするにはどうすればよいですか?Apr 02, 2025 am 07:15 AM

fiddlereveryversings for the-middleの測定値を使用するときに検出されないようにする方法

Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Python 3.6にピクルスファイルをロードするときに「__Builtin__」モジュールが見つからない場合はどうすればよいですか?Apr 02, 2025 am 07:12 AM

Python 3.6のピクルスファイルのロードレポートエラー:modulenotFounderror:nomodulenamed ...

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの精度を改善する方法は?Apr 02, 2025 am 07:09 AM

風光明媚なスポットコメント分析におけるJieba Wordセグメンテーションの問題を解決する方法は?風光明媚なスポットコメントと分析を行っているとき、私たちはしばしばJieba Wordセグメンテーションツールを使用してテキストを処理します...

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン

SublimeText3 Linux 新バージョン

SublimeText3 Linux 最新バージョン