検索
ホームページバックエンド開発Python チュートリアルscikit-learn を機械学習に使用する方法

scikit-learn を機械学習に使用する方法

機械学習は、コンピューターが自動的に学習してパフォーマンスを向上させるテクノロジーです。分類、回帰、クラスタリングなどのさまざまなタスクに適用できます。 scikit-learn は、機械学習タスクをシンプルかつ効率的に行うための実用的なツールとアルゴリズムを多数提供する人気の Python 機械学習ライブラリです。この記事では、機械学習に scikit-learn を使用する方法を紹介し、いくつかのコード例を示します。

最初のステップは、scikit-learn ライブラリをインストールすることです。 pip コマンドを使用してターミナルにインストールできます。

pip install scikit-learn

インストールが完了したら、機械学習に scikit-learn の使用を開始できます。

まず、必要なライブラリとモジュールをインポートします:

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn import metrics

その後、scikit-learn によって提供されるデータ セットを使用して機械学習を実行できます。ここでは例として iris データ セットを取り上げます。データ セット内の

iris = datasets.load_iris()
X = iris.data
y = iris.target

XX は特徴行列を表し、y はターゲット変数を表します。次に、データ セットをトレーニング セットとテスト セットに分割します。

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)

上記のコードは、データ セットの 80% をトレーニング セットとして使用し、20% をテスト セットとして使用します。

次に、適切な機械学習アルゴリズムを選択し、モデルを作成します。ここではサポート ベクター マシン (SVM) を例として取り上げます。

model = svm.SVC()

モデルを作成した後、トレーニング セットを使用してモデルをトレーニングできます:

model.fit(X_train, y_train)

トレーニングが完了したら、テスト セットを使用してモデルのパフォーマンスを評価できます。

y_pred = model.predict(X_test)

scikit を使用する - learn によって提供されるメトリクス モジュールは、モデルの精度を計算できます:

accuracy = metrics.accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)

精度に加えて、他の評価指標もモデルのパフォーマンスを評価するために使用できます。 、精度や再現率、F1 スコアなど。

要約すると、機械学習に scikit-learn を使用する手順には、データの準備、データセットの分割、モデルの選択、トレーニング モデル、評価モデルが含まれます。 scikit-learn は、機械学習の効果をさらに向上させるために、データの前処理、特徴の選択、モデルの選択、その他のタスクに使用できる他の多くの関数とクラスも提供します。

要約すると、この記事では機械学習に scikit-learn を使用する方法を紹介し、いくつかのコード例を示します。この記事を通じて読者の皆様が scikit-learn について理解を深め、実践で柔軟に活用できるようになれば幸いです。機械学習に scikit-learn を使用すると、開発効率とモデルのパフォーマンスが大幅に向上し、データ サイエンティストと機械学習エンジニアに強力なツールを提供できます。

以上がscikit-learn を機械学習に使用する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Python vs. C:曲線と使いやすさの学習Python vs. C:曲線と使いやすさの学習Apr 19, 2025 am 12:20 AM

Pythonは学習と使用が簡単ですが、Cはより強力ですが複雑です。 1。Python構文は簡潔で初心者に適しています。動的なタイピングと自動メモリ管理により、使いやすくなりますが、ランタイムエラーを引き起こす可能性があります。 2.Cは、高性能アプリケーションに適した低レベルの制御と高度な機能を提供しますが、学習しきい値が高く、手動メモリとタイプの安全管理が必要です。

Python vs. C:メモリ管理とコントロールPython vs. C:メモリ管理とコントロールApr 19, 2025 am 12:17 AM

PythonとCは、メモリ管理と制御に大きな違いがあります。 1。Pythonは、参照カウントとガベージコレクションに基づいて自動メモリ管理を使用し、プログラマーの作業を簡素化します。 2.Cには、メモリの手動管理が必要であり、より多くの制御を提供しますが、複雑さとエラーのリスクが増加します。どの言語を選択するかは、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

科学コンピューティングのためのPython:詳細な外観科学コンピューティングのためのPython:詳細な外観Apr 19, 2025 am 12:15 AM

科学コンピューティングにおけるPythonのアプリケーションには、データ分析、機械学習、数値シミュレーション、視覚化が含まれます。 1.numpyは、効率的な多次元配列と数学的関数を提供します。 2。ScipyはNumpy機能を拡張し、最適化と線形代数ツールを提供します。 3. Pandasは、データ処理と分析に使用されます。 4.matplotlibは、さまざまなグラフと視覚的な結果を生成するために使用されます。

PythonとC:適切なツールを見つけるPythonとC:適切なツールを見つけるApr 19, 2025 am 12:04 AM

PythonまたはCを選択するかどうかは、プロジェクトの要件に依存するかどうかは次のとおりです。1)Pythonは、簡潔な構文とリッチライブラリのため、迅速な発展、データサイエンス、スクリプトに適しています。 2)Cは、コンピレーションと手動メモリ管理のため、システムプログラミングやゲーム開発など、高性能および基礎となる制御を必要とするシナリオに適しています。

データサイエンスと機械学習のためのPythonデータサイエンスと機械学習のためのPythonApr 19, 2025 am 12:02 AM

Pythonは、データサイエンスと機械学習で広く使用されており、主にそのシンプルさと強力なライブラリエコシステムに依存しています。 1)Pandasはデータ処理と分析に使用され、2)Numpyが効率的な数値計算を提供し、3)SCIKIT-LEARNは機械学習モデルの構築と最適化に使用されます。これらのライブラリは、Pythonをデータサイエンスと機械学習に理想的なツールにします。

Pythonの学習:2時間の毎日の研究で十分ですか?Pythonの学習:2時間の毎日の研究で十分ですか?Apr 18, 2025 am 12:22 AM

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発用のPython:主要なアプリケーションWeb開発用のPython:主要なアプリケーションApr 18, 2025 am 12:20 AM

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Python vs. C:パフォーマンスと効率の探索Python vs. C:パフォーマンスと効率の探索Apr 18, 2025 am 12:20 AM

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

mPDF

mPDF

mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 英語版

SublimeText3 英語版

推奨: Win バージョン、コードプロンプトをサポート!

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

Dreamweaver Mac版

Dreamweaver Mac版

ビジュアル Web 開発ツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター