人工知能は、複雑なデータセットを迅速に解析して洞察を生成し、企業が IT サービスを合理化するための措置を特定して実行できるように支援します。
しかし、これは、人工知能があらゆる企業のあらゆる IT サービスを最適化できるという意味ではありません。 IT チームがサービス最適化戦略に人工知能を適用できる範囲には重要な制限があります。
サービス最適化における人工知能の利点
サービス最適化の分野で人工知能ができること、できないことを詳しく掘り下げる前に、まずサービスの最適化に人工知能を使用する必要がある理由について説明します。
主な理由は、サービスの最適化には大量のデータの分析が必要になることが多く、人工知能により人間がこの作業をより迅速、より効率的、よりスケーラブルに実行できるようになるためです。
これを念頭に置いて、企業内の IT プロセスを合理化したいとします。これは、IT チームが手動でデータ ソースを確認し、どの種類のリクエストの完了に最も時間がかかるかを判断し、それらのプロセスを高速化する方法について推奨事項を作成することで実現できます。これは実行可能ですが、時間がかかり、IT チームの集中力が大幅に低下します。
あるいは、すべてのデータ ソースを自動的に分析し、特定のリクエストの完了に時間がかかる理由を洞察し、サービスを最適化する場所と方法に関する推奨事項を生成する AI ツールを導入することもできます。このアプローチでは、同じ洞察を手動で収集する場合に比べてほんのわずかな時間で結果が得られます。
AI は IT サービスの最適化に役立ちます
AI ベースのサービス最適化手法は、次の条件を満たすほぼすべての種類の IT プロセスに適用できます。
- 大量のデータがあれば、AI ツールがそれを分析してプロセスがどのように機能するかを理解し、改善の機会を見つけることができます。
- このプロセスには、完全に理解するために心の知能指数を必要とする複雑な人間関係は含まれません。
コア IT サービスの多くは両方の要件を満たしています。 AI を使用してデータを分析してエンドユーザーの IT サービスを向上させる例に加えて、他のサービスも AI を活用して最適化するのに適しています
インフラストラクチャ管理:AI はログ、メトリクスを分析できますおよびその他のインフラストラクチャ データを利用して、企業のインフラストラクチャのニーズを理解し、最適なインフラストラクチャ管理のためのガイダンスを提供します。さらに、不必要なインフラストラクチャ支出の削減、ハードウェア更新プロセスの計画などにも役立ちます。
ネットワーク管理: 人工知能はネットワーク トラフィック パターンを分析し、ボトルネックの特定や停止の予測に役立ち、企業のネットワーク パフォーマンスの向上につながります。
ソフトウェア開発: ソフトウェアを構築する企業は、人工知能を活用してソフトウェア配信プロセスを最適化できます。たとえば、スプリントがどのくらいの期間続くべきか、各リリース サイクルで何を合理的に実装できるかを予測できます。変化します。 AI ツールは、CI/CD ツールからのログや、アプリケーションのデプロイメントの速度や頻度などのデータを分析することでこれを実行できます。
例を挙げればきりがありませんが、要点は単純です。システム データを生成するほぼすべての IT サービスと、技術的なリソースやプロセスが関与するサービスは、AI ベースの洞察によって改善される可能性があるということです。
サービスの最適化に人工知能を使用しない場合
サービスに次の特性が 1 つ以上ある場合、一般に AI 支援による最適化には適していません。
- データを分析する AI ツールによる最適化は、データソースが無関係な場合には実現できません。倫理的な意思決定が必要な場合、AI では対応できないことがよくあります。創造性を伴う意思決定やアイデアは、まったく新しいものを生み出すことはできません。コンセプト
- 心の知能指数や信頼関係の構築が必要な場合、AI はこれらのタスクをうまく実行できません。
- 前例のないサイバー攻撃サーバーにさらされる環境など、構造化されていない環境や予測不可能な環境への適応が含まれます。この場合、人工知能は対処する必要がある状態を確実に予測できないため、あまり役に立ちません。
- AI ベースのサービス最適化が価値を生み出す可能性が低い現実世界の状況の例として、プロジェクト管理を考えてみましょう。プロジェクト管理の特定の側面と、プロジェクトの関連する側面のいくつかは自動化できます。ツールを使用して文書化できます。 運用データ。しかし、これらの数字は進行中のプロジェクトの一部にすぎません。各プロジェクトには固有の要件があるため、過去のプロジェクトのデータを活用して今後のプロジェクトを最適化することが難しい場合があります。
- さらに、ほとんどのプロジェクトでは、人々の間で広範なやり取りが行われます。また、利害関係者間の信頼と説明責任も必要となります。これらは、AI ツールが評価したり最適化したりすることが苦手な要素です。
プロジェクト管理プロセスを最適化するには、AI ツールを導入するだけでなく、その推奨事項をレビューする必要もあります。各プロジェクトの要件を詳細に理解し、信頼を構築して関係を管理するスキルが必要です。
サプライヤーとの交渉も、人工知能を使用して合理化することが難しい一般的なプロセスの例です。プロジェクト管理と同様、交渉には複雑な人的要素が関係します。 AI ツールは、サプライヤーの価格設定傾向が時間の経過とともにどのように変化するかを理解するなど、交渉の一部の側面では役立つ可能性がありますが、サプライヤーとどのように対話するか、またはどのような価格設定条件を要求するかを正確に伝えることはできません。サプライヤーが約束を確実に履行するためには信頼関係を構築することが不可欠ですが、サプライヤーにはこれを履行する能力がありません。
結論
人工知能には、さまざまな一般的な IT プロセスやビジネス プロセスの速度、効率、拡張性を向上させ、コストを削減する大きな可能性があります。ただし、サービス最適化ソリューションとしての AI の限界を理解することが重要です。このベンチャーが純粋なテクノロジーの領域を超えると、AI は貴重な洞察を提供するものではなくなり、AI の能力を超えた意思決定を人間が行う必要が出てきます。
以上がサービス最適化における人工知能の長所と短所は何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

「AI-Ready労働力」という用語は頻繁に使用されますが、サプライチェーン業界ではどういう意味ですか? サプライチェーン管理協会(ASCM)のCEOであるAbe Eshkenaziによると、批評家ができる専門家を意味します

分散型AI革命は静かに勢いを増しています。 今週の金曜日、テキサス州オースティンでは、ビテンサーのエンドゲームサミットは極めて重要な瞬間を示し、理論から実用的な応用に分散したAI(DEAI)を移行します。 派手なコマーシャルとは異なり

エンタープライズAIはデータ統合の課題に直面しています エンタープライズAIの適用は、ビジネスデータを継続的に学習することで正確性と実用性を維持できるシステムを構築する大きな課題に直面しています。 NEMOマイクロサービスは、NVIDIAが「データフライホイール」と呼んでいるものを作成することにより、この問題を解決し、AIシステムがエンタープライズ情報とユーザーインタラクションへの継続的な露出を通じて関連性を維持できるようにします。 この新しく発売されたツールキットには、5つの重要なマイクロサービスが含まれています。 NEMOカスタマイザーは、より高いトレーニングスループットを備えた大規模な言語モデルの微調整を処理します。 NEMO評価者は、カスタムベンチマークのAIモデルの簡素化された評価を提供します。 Nemo Guardrailsは、コンプライアンスと適切性を維持するためにセキュリティ管理を実装しています

AI:芸術とデザインの未来 人工知能(AI)は、前例のない方法で芸術とデザインの分野を変えており、その影響はもはやアマチュアに限定されませんが、より深く影響を与えています。 AIによって生成されたアートワークとデザインスキームは、広告、ソーシャルメディアの画像生成、Webデザインなど、多くのトランザクションデザインアクティビティで従来の素材画像とデザイナーに迅速に置き換えられています。 ただし、プロのアーティストやデザイナーもAIの実用的な価値を見つけています。 AIを補助ツールとして使用して、新しい美的可能性を探求し、さまざまなスタイルをブレンドし、新しい視覚効果を作成します。 AIは、アーティストやデザイナーが繰り返しタスクを自動化し、さまざまなデザイン要素を提案し、創造的な入力を提供するのを支援します。 AIはスタイル転送をサポートします。これは、画像のスタイルを適用することです

最初はビデオ会議プラットフォームで知られていたZoomは、エージェントAIの革新的な使用で職場革命をリードしています。 ZoomのCTOであるXD Huangとの最近の会話は、同社の野心的なビジョンを明らかにしました。 エージェントAIの定義 huang d

AIは教育に革命をもたらしますか? この質問は、教育者と利害関係者の間で深刻な反省を促しています。 AIの教育への統合は、機会と課題の両方をもたらします。 Tech Edvocate NotesのMatthew Lynch、Universitとして

米国における科学的研究と技術の開発は、おそらく予算削減のために課題に直面する可能性があります。 Natureによると、海外の雇用を申請するアメリカの科学者の数は、2024年の同じ期間と比較して、2025年1月から3月まで32%増加しました。以前の世論調査では、調査した研究者の75%がヨーロッパとカナダでの仕事の検索を検討していることが示されました。 NIHとNSFの助成金は過去数か月で終了し、NIHの新しい助成金は今年約23億ドル減少し、3分の1近く減少しました。リークされた予算の提案は、トランプ政権が科学機関の予算を急激に削減していることを検討しており、最大50%の削減の可能性があることを示しています。 基礎研究の分野での混乱は、米国の主要な利点の1つである海外の才能を引き付けることにも影響を与えています。 35

Openaiは、強力なGPT-4.1シリーズを発表しました。実際のアプリケーション向けに設計された3つの高度な言語モデルのファミリー。 この大幅な飛躍は、より速い応答時間、理解の強化、およびTと比較した大幅に削減されたコストを提供します


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

ドリームウィーバー CS6
ビジュアル Web 開発ツール

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

ホットトピック









