検索
ホームページバックエンド開発GolangBeego で Flume と Kafka を使用してログの収集と分析を行う

Beego は、迅速な開発と簡単な拡張をサポートする効率的な Go 言語 Web フレームワークです。実際のアプリケーションでは、有用な情報や知識を得るために大量の Web ログ データを収集および分析する方法に直面することがよくあります。この記事では、Flume と Kafka を使用して Beego Web ログ データを収集および分析する方法を紹介します。

Flume は、さまざまなデータ ソースやさまざまなストリーミング データ パイプラインからの大量のログ データの収集、集約、送信をサポートできる、信頼性が高くスケーラブルな分散ログ収集、集約、および送信システムです。 Kafka は、大量のリアルタイム データ ストリームを処理でき、シンプルな水平スケーラビリティと柔軟なスケーラビリティを備えた、高スループット、分散型、耐久性の高いメッセージ ミドルウェア システムです。これらはすべて、Apache Foundation によってサポートおよび維持されているオープン ソース プロジェクトです。

1. Flume のインストールと設定

まず、Flume をインストールして設定する必要があります。この記事では、Flume バージョン 1.9.0 を使用し、ローカル環境でテストします。 Flume は公式 Web サイト http://flume.apache.org/download.html からダウンロードできます。

Flume をインストールした後、Flume エージェント構成ファイルを構成する必要があります。この記事では、Flume の簡単な設定方法を使用します。 Flume インストール ディレクトリに flume.conf という名前の設定ファイルを作成し、その中に Flume エージェントを定義する必要があります。

flume.conf ファイルでは、以下に示すように、ソース、チャネル、シンクを含む Flume エージェントを定義する必要があります。

agent.sources = avro-source
agent.channels = memory-channel
agent.sinks = kafka-sink
 
# Define the source
agent.sources.avro-source.type = avro
agent.sources.avro-source.bind = localhost
agent.sources.avro-source.port = 10000
 
# Define the channel
agent.channels.memory-channel.type = memory
agent.channels.memory-channel.capacity = 10000
 
# Define the sink
agent.sinks.kafka-sink.type = org.apache.flume.sink.kafka.KafkaSink
agent.sinks.kafka-sink.kafka.bootstrap.servers = localhost:9092
agent.sinks.kafka-sink.kafka.topic = beego-log
agent.sinks.kafka-sink.batchSize = 20
agent.sinks.kafka-sink.requiredAcks = 1
 
# Bind the source and sink to the channel
agent.sources.avro-source.channels = memory-channel
agent.sinks.kafka-sink.channel = memory-channel

上記の設定ファイルでは、名前を定義します。 avro-source のソース。そのタイプは avro です。マシンのローカルホスト上のポート 10000 をリッスンし、Beego Web ログ データを受け入れます。また、メモリに最大 10,000 個のイベントを保存できる、タイプがメモリである、memory-channel という名前のチャネルを定義します。また、Beego Web ログ データがトピックに送信される、タイプが KafkaSink である kafka-sink という名前のシンクを提供します。 Kafka では beego-log という名前です。この構成では、batchSize (毎回 Kafka に書き込まれるメッセージの数) や requiredAcks (確認応答が必要な Kafka に書き込まれるメッセージの数) など、KafkaSink のいくつかのプロパティも設定します。

2. Kafka のインストールと構成

次に、Kafka をインストールして構成する必要があります。この記事では、Kafka バージョン 2.2.0 を使用し、ローカル環境でテストします。 Kafka は、公式 Web サイト http://kafka.apache.org/downloads.html からダウンロードできます。

Kafka をインストールした後、beego-log という名前のトピックを作成する必要があります。以下に示すように、Kafka のコマンド ライン ツールを使用してトピックを作成できます:

bin/kafka-topics.sh --zookeeper localhost:2181 --create --replication-factor 1 --partitions 1 --topic beego-log

上記のコマンドでは、 Kafka のコマンド ライン ツール kafka-topics.sh を使用して beego-log という名前のトピックを作成し、レプリケーション係数 (replication-factor) を 1 として、パーティション (partitions) を 1 として指定し、ZooKeeper のアドレスを localhost:2181 として使用します。

3. Beego Web Framework のアプリケーション

Beego Web Framework を使用して、簡単な Web アプリケーションを作成し、Web ログ データを記録します。この記事では、以下に示すように、コントローラーとルーターが 1 つだけあるアプリケーションを作成します。

package main
 
import (
    "github.com/astaxie/beego"
)
 
type MainController struct {
    beego.Controller
}
 
func (c *MainController) Get() {
    // do something
    c.Ctx.WriteString("Hello, World!")
}
 
func main() {
    beego.Router("/", &MainController{})
    beego.Run()
}

上記のアプリケーションでは、MainController のコントローラーというアプリケーションを作成しました。このアプリケーションには Get メソッドが 1 つだけあります。 Get メソッドでは、いくつかのロジックを実装し、クライアントにメッセージを返します。 Beego のルーティング関数を使用して、ルート パス「/」を MainController の Get メソッドにマッピングしました。

Beego の設定ファイルでロギング (ログ) 機能を有効にし、ログ レベルをデバッグに設定して、より詳細な情報を記録および追跡できます。 Beego の設定ファイル app.conf に次の内容を追加する必要があります:

appname = beego-log
httpport = 8080
runmode = dev
 
[log]
level = debug
 
[[Router]]
    Pattern = /
    HTTPMethod = get
    Controller = main.MainController:Get

上記の設定ファイルでは、アプリケーション名、HTTP ポート、動作モード、およびログ レベルを定義します。また、Router という名前のルートを指定し、MainController という名前のコントローラーを定義し、ルート パス「/」を Get メソッドにマップしました。

4. ログ収集と分析に Flume と Kafka を使用する

単純な Beego アプリケーションと Flume エージェントができたので、それらを統合し、Kafka を使用してログ収集と分析を実行できます。

Beego アプリケーションを起動し、それに HTTP リクエストを送信して、ログ データを生成します。次のように、curl コマンドを使用して HTTP リクエストを Beego に送信できます:

$ curl http://localhost:8080/
Hello, World!

Flume エージェントを起動し、次のコマンドを使用して開始します:

$ ./bin/flume-ng agent --conf ./conf --conf-file ./conf/flume.conf --name agent --foreground

上記のコマンドでは、 Flume のコマンドライン ツール flume-ng を使用して、agent という名前の Flume エージェントを起動し、設定ファイルを ./conf/flume.conf として指定します。

これで、Kafka で Beego Web ログ データを表示できるようになりました。以下に示すように、Kafka のコマンド ライン ツール kafka-console-consumer.sh を使用して、beego-log トピックからのデータを使用できます。

$ bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic beego-log --from-beginning

上記のコマンドでは、Kafka のコマンド ライン ツール kafka-console- を使用します。 Consumer.sh を使用してコンシューマを起動し、beego-log という名前のトピックからデータを消費します。 --from-beginning オプションを使用して、最も古いメッセージから消費を開始します。

Beego アプリケーションをリクエストすると、Flume はログ イベントを収集し、メモリ内チャネルに保存して、beego-log という名前の Kafka トピックに転送します。 Kafka のコマンド ライン ツールまたは API を使用して、これらのログ データを消費および処理して、より貴重な情報と洞察を取得できます。

5. 概要

この記事では、Flume と Kafka を使用して Beego Web ログ データを収集および分析する方法を紹介します。まず Flume と Kafka をインストールして構成し、次に単純な Beego アプリケーションを作成してそのログ機能を構成しました。最後に、シンプルな Flume エージェントを作成し、ログの収集と分析に Kafka を使用して Beego アプリケーションと統合しました。

実際のアプリケーションでは、ニーズやシナリオに応じて Flume と Kafka のパラメーターとプロパティを柔軟に構成およびカスタマイズできるため、さまざまなデータ ソースや処理タスクにうまく適応し、より貴重な情報を取得できます。知識。

以上がBeego で Flume と Kafka を使用してログの収集と分析を行うの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事の内容はネチズンが自主的に寄稿したものであり、著作権は原著者に帰属します。このサイトは、それに相当する法的責任を負いません。盗作または侵害の疑いのあるコンテンツを見つけた場合は、admin@php.cn までご連絡ください。
Golang vs. Python:並行性とマルチスレッドGolang vs. Python:並行性とマルチスレッドApr 17, 2025 am 12:20 AM

Golangは高い並行性タスクにより適していますが、Pythonには柔軟性がより多くの利点があります。 1.Golangは、GoroutineとChannelを介して並行性を効率的に処理します。 2。Pythonは、GILの影響を受けるが、複数の並行性メソッドを提供するスレッドとAsyncioに依存しています。選択は、特定のニーズに基づいている必要があります。

GolangとC:パフォーマンスのトレードオフGolangとC:パフォーマンスのトレードオフApr 17, 2025 am 12:18 AM

GolangとCのパフォーマンスの違いは、主にメモリ管理、コンピレーションの最適化、ランタイム効率に反映されています。 1)Golangのゴミ収集メカニズムは便利ですが、パフォーマンスに影響を与える可能性があります。

Golang vs. Python:アプリケーションとユースケースGolang vs. Python:アプリケーションとユースケースApr 17, 2025 am 12:17 AM

seetgolangforhighperformance andconcurrency、ithyforbackendservicesandnetworkプログラミング、selectthonforrapiddevelopment、datascience、andmachinelearningduetoistsversitydextentextensextensentensiveLibraries。

Golang vs. Python:重要な違​​いと類似点Golang vs. Python:重要な違​​いと類似点Apr 17, 2025 am 12:15 AM

GolangとPythonにはそれぞれ独自の利点があります。Golangは高性能と同時プログラミングに適していますが、PythonはデータサイエンスとWeb開発に適しています。 Golangは同時性モデルと効率的なパフォーマンスで知られていますが、Pythonは簡潔な構文とリッチライブラリエコシステムで知られています。

Golang vs. Python:使いやすさと学習曲線Golang vs. Python:使いやすさと学習曲線Apr 17, 2025 am 12:12 AM

GolangとPythonはどのような側面で使いやすく、より滑らかな学習曲線を持っていますか? Golangは、高い並行性と高性能のニーズにより適しており、学習曲線はC言語の背景を持つ開発者にとって比較的穏やかです。 Pythonは、データサイエンスと迅速なプロトタイピングにより適しており、初心者にとって学習曲線は非常にスムーズです。

パフォーマンスレース:ゴラン対cパフォーマンスレース:ゴラン対cApr 16, 2025 am 12:07 AM

GolangとCにはそれぞれパフォーマンス競争において独自の利点があります。1)Golangは、高い並行性と迅速な発展に適しており、2)Cはより高いパフォーマンスと微細な制御を提供します。選択は、プロジェクトの要件とチームテクノロジースタックに基づいている必要があります。

Golang vs. C:コードの例とパフォーマンス分析Golang vs. C:コードの例とパフォーマンス分析Apr 15, 2025 am 12:03 AM

Golangは迅速な発展と同時プログラミングに適していますが、Cは極端なパフォーマンスと基礎となる制御を必要とするプロジェクトにより適しています。 1)Golangの並行性モデルは、GoroutineとChannelを介した同時性プログラミングを簡素化します。 2)Cのテンプレートプログラミングは、一般的なコードとパフォーマンスの最適化を提供します。 3)Golangのごみ収集は便利ですが、パフォーマンスに影響を与える可能性があります。 Cのメモリ管理は複雑ですが、コントロールは問題ありません。

Golangの影響:速度、効率、シンプルさGolangの影響:速度、効率、シンプルさApr 14, 2025 am 12:11 AM

speed、効率、およびシンプル性をspeedsped.1)speed:gocompilesquilesquicklyandrunseffictient、理想的なlargeprojects.2)効率:等系dribribraryreducesexexternaldedenciess、開発効果を高める3)シンプルさ:

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター