Scrapy クローラーの実践: ソーシャル ネットワーク分析のための QQ スペース データのクロール
近年、ソーシャル ネットワーク分析に対する人々の需要はますます高まっています。 QQ Zone は中国最大のソーシャル ネットワークの 1 つであり、そのデータのクローリングと分析はソーシャル ネットワークの調査において特に重要です。この記事では、Scrapy フレームワークを使用して QQ Space データをクロールし、ソーシャル ネットワーク分析を実行する方法を紹介します。
1. Scrapy の概要
Scrapy は、Python をベースにしたオープンソースの Web クローリング フレームワークで、Spider メカニズムを通じて Web サイト データを迅速かつ効率的に収集し、処理して保存するのに役立ちます。 Scrapy フレームワークは、エンジン、スケジューラー、ダウンローダー、スパイダー、プロジェクト パイプラインの 5 つのコア コンポーネントで構成されています。スパイダーは、Web サイトへのアクセス方法、Web ページからのデータの抽出、および抽出されたデータの保存方法を定義するクローラー ロジックのコア コンポーネントです。
2. Scrapy の操作プロセス
1. Scrapy プロジェクトの作成
コマンド ラインを使用してプロジェクトを作成するディレクトリを入力し、次のように入力します。コマンド:
scrapy startproject qq_zone
このコマンドは、「qq_zone」という名前の Scrapy プロジェクトを作成します。
2. スパイダーの作成
Scrapy プロジェクトでは、最初にスパイダーを作成する必要があります。プロジェクトのディレクトリに「spiders」という名前のフォルダーを作成し、そのフォルダーの下に「qq_zone_spider.py」という名前の Python ファイルを作成します。
qq_zone_spider.py では、まず名前、開始 URL、許可されるドメイン名などの Spider の基本情報を定義する必要があります。コードは次のとおりです。
import scrapy class QQZoneSpider(scrapy.Spider): name = "qq_zone" start_urls = ['http://user.qzone.qq.com/xxxxxx'] allowed_domains = ['user.qzone.qq.com']
start_urls はクロールする QQ スペースのメイン ページの URL に置き換える必要があり、「xxxxxx」はターゲット QQ の数値 ID に置き換える必要があることに注意してください。番号。
次に、データ抽出ルールを定義する必要があります。 QQ Space は Javascript を通じてレンダリングされるページであるため、ページ データを取得するには Selenium PhantomJS を使用する必要があります。コードは次のとおりです。
from scrapy.selector import Selector from selenium import webdriver class QQZoneSpider(scrapy.Spider): name = "qq_zone" start_urls = ['http://user.qzone.qq.com/xxxxxx'] allowed_domains = ['user.qzone.qq.com'] def __init__(self): self.driver = webdriver.PhantomJS() def parse(self, response): self.driver.get(response.url) sel = Selector(text=self.driver.page_source) # 爬取数据的代码
次に、XPath または CSS セレクターを使用して、ページ構造に従ってページからデータを抽出できます。
3. データの処理と保存
qq_zone_spider.py では、抽出されたデータの処理方法を定義する必要があります。 Scrapy は、データの処理と保存のためのプロジェクト パイプライン メカニズムを提供します。このメカニズムを有効にして、settings.py ファイルでプロジェクト パイプラインを定義できます。
settings.py ファイルに次のコードを追加します。
ITEM_PIPELINES = { 'qq_zone.pipelines.QQZonePipeline': 300, } DOWNLOAD_DELAY = 3
このうち、DOWNLOAD_DELAY はページをクロールするときの遅延時間で、必要に応じて調整できます。
次に、プロジェクトのルート ディレクトリに「pipelines.py」という名前のファイルを作成し、キャプチャしたデータの処理方法と保存方法を定義します。
import json class QQZonePipeline(object): def __init__(self): self.file = open('qq_zone_data.json', 'w') def process_item(self, item, spider): line = json.dumps(dict(item)) + " " self.file.write(line) return item def close_spider(self, spider): self.file.close()
上記のコードでは、json モジュールを使用してデータを json 形式に変換し、「qq_zone_data.json」ファイルに保存します。
3. ソーシャル ネットワーク分析
QQ スペース データのキャプチャが完了したら、Python の NetworkX モジュールを使用してソーシャル ネットワーク分析を実行できます。
NetworkX は、複雑なネットワークを分析するための Python ライブラリであり、グラフの視覚化、ノードとエッジの属性設定、コミュニティの検出など、多くの強力なツールを提供します。以下は、単純なソーシャル ネットワーク分析コードを示しています。
import json import networkx as nx import matplotlib.pyplot as plt G = nx.Graph() with open("qq_zone_data.json", "r") as f: for line in f: data = json.loads(line) uid = data["uid"] friends = data["friends"] for friend in friends: friend_name = friend["name"] friend_id = friend["id"] G.add_edge(uid, friend_id) # 可视化 pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos, node_size=20) nx.draw_networkx_edges(G, pos, alpha=0.4) plt.axis('off') plt.show()
上記のコードでは、まずキャプチャされたデータをメモリに読み取り、NetworkX を使用して無向グラフを構築します。このグラフでは、各ノードが QQ アカウント、各エッジを表します。は 2 つの QQ アカウント間の友達関係を表します。
次に、スプリング レイアウト アルゴリズムを使用してグラフィックスをレイアウトし、最後に matplotlib を使用して視覚化します。
4. 概要
この記事では、データ キャプチャに Scrapy フレームワークを使用し、単純なソーシャル ネットワーク分析に NetworkX を使用する方法を紹介します。読者の皆様は Scrapy、Selenium、NetworkX の使用についてより深く理解していると思います。もちろん、QQ スペース データのクローリングはソーシャル ネットワーク分析の一部にすぎず、将来的にはデータのより詳細な調査と分析が必要になります。
以上がScrapy クローラーの実践: ソーシャル ネットワーク分析のための QQ スペース データのクロールの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonは、自動化、スクリプト、およびタスク管理に優れています。 1)自動化:OSやShutilなどの標準ライブラリを介してファイルバックアップが実現されます。 2)スクリプトの書き込み:Psutilライブラリを使用してシステムリソースを監視します。 3)タスク管理:スケジュールライブラリを使用してタスクをスケジュールします。 Pythonの使いやすさと豊富なライブラリサポートにより、これらの分野で優先ツールになります。

限られた時間でPythonの学習効率を最大化するには、PythonのDateTime、時間、およびスケジュールモジュールを使用できます。 1. DateTimeモジュールは、学習時間を記録および計画するために使用されます。 2。時間モジュールは、勉強と休息の時間を設定するのに役立ちます。 3.スケジュールモジュールは、毎週の学習タスクを自動的に配置します。

PythonはゲームとGUI開発に優れています。 1)ゲーム開発は、2Dゲームの作成に適した図面、オーディオ、その他の機能を提供し、Pygameを使用します。 2)GUI開発は、TKINTERまたはPYQTを選択できます。 TKINTERはシンプルで使いやすく、PYQTは豊富な機能を備えており、専門能力開発に適しています。

Pythonは、データサイエンス、Web開発、自動化タスクに適していますが、Cはシステムプログラミング、ゲーム開発、組み込みシステムに適しています。 Pythonは、そのシンプルさと強力なエコシステムで知られていますが、Cは高性能および基礎となる制御機能で知られています。

2時間以内にPythonの基本的なプログラミングの概念とスキルを学ぶことができます。 1.変数とデータ型、2。マスターコントロールフロー(条件付きステートメントとループ)、3。機能の定義と使用を理解する4。

Pythonは、Web開発、データサイエンス、機械学習、自動化、スクリプトの分野で広く使用されています。 1)Web開発では、DjangoおよびFlask Frameworksが開発プロセスを簡素化します。 2)データサイエンスと機械学習の分野では、Numpy、Pandas、Scikit-Learn、Tensorflowライブラリが強力なサポートを提供します。 3)自動化とスクリプトの観点から、Pythonは自動テストやシステム管理などのタスクに適しています。

2時間以内にPythonの基本を学ぶことができます。 1。変数とデータ型を学習します。2。ステートメントやループの場合などのマスター制御構造、3。関数の定義と使用を理解します。これらは、簡単なPythonプログラムの作成を開始するのに役立ちます。

10時間以内にコンピューター初心者プログラミングの基本を教える方法は?コンピューター初心者にプログラミングの知識を教えるのに10時間しかない場合、何を教えることを選びますか...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。
