Python は、データ サイエンティストやアナリストにとって常に選ばれるプログラミング言語の 1 つです。現在最も人気のある Pandas を含む、科学コンピューティングおよびデータ処理ライブラリの豊富なセットを備えています。これに加えて、Python はさまざまな種類の Web アプリケーションの作成と管理に使用できる、フル機能を備えたサーバー側プログラミング言語です。
この記事では、Python サーバーサイド プログラミングでのデータ分析に Pandas を使用する方法を詳しく紹介します。 Python で Pandas ライブラリをインストールして使用する方法、および基本的なデータ分析 Web アプリケーションを作成する方法を検討します。
1. Pandas ライブラリをインストールして使用する
まず、Python で Pandas ライブラリを使用するには、それをシステムにインストールする必要があります。パンダは、pip または conda パッケージ マネージャーを介してインストールできます。ターミナルまたはコマンド プロンプトを開いて次のコマンドを実行します:
pip install pandas
または conda を使用します:
conda install pandas
次に、次のように Python コードに Pandas ライブラリをインポートする必要があります:
import pandas as pd
Pandas ライブラリを使用する環境をセットアップしたので、データ分析を開始できます。
2. データ分析 Web アプリケーションの作成
次に、Pandas を使用してデータ分析を行う Web アプリケーションの作成方法を紹介します。
まず、app.py という名前の Python ファイルを作成し、次のコードを記述して必要なライブラリとモジュールをインポートします。
from flask import Flask, render_template, request import pandas as pd app = Flask(__name__)
上記のコードは、Flask ライブラリ、render_template、および request モジュールをインポートし、データ処理ツールとして Pandas ライブラリもインポートします。
次に、データを読み取る必要があります。 Pandas の read_csv() メソッドを使用して CSV ファイルを読み取り、DataFrame オブジェクトに保存できます。
df = pd.read_csv("data.csv") # 通过指定CSV文件路径来读取数据
この CSV ファイル内のデータは、自分で収集してフォーマットしたデータ、またはオンライン データ セットからダウンロードしたデータです。ここでは、データの取得方法ではなく、Pandas を使用してデータを分析する方法にのみ焦点を当てます。
データからの抽出、変換、ロードは、データ サイエンス プロセスの基礎です。ここでは、DataFrame オブジェクトの head() メソッドを通じてデータの最初の数レコードを確認します。
df.head()
また、describe() メソッドを使用して、データ セットの基本的な記述統計をチェックすることもできます。
df.describe()
ユーザーがフロントエンドを使用できるように、このデータを表示する Web インターフェイスが必要です。データを調査および分析するための最終ツール。 Flask が提供する render_template() メソッドを使用して、Web アプリケーションでレンダリングされる HTML ファイルをレンダリングできます。
@app.route('/') def index(): return render_template('index.html')
次に、HTML テンプレートを作成し、Flask アプリケーションに埋め込む必要があります。この例では、テーブルを含む HTML ファイルを作成し、index.html という名前を付けました。 Python コードに格納されているデータは次のようにレンダリングされます。
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>Web App</title> </head> <body> <table> <thead> <tr> <th scope="col">Country</th> <th scope="col">Population</th> <th scope="col">Area</th> </tr> </thead> <tbody> {% for index, row in df.iterrows() %} <tr> <td>{{ row['Country'] }}</td> <td>{{ row['Population'] }}</td> <td>{{ row['Area'] }}</td> </tr> {% endfor %} </tbody> </table> </body> </html>
iterrows() メソッドを使用して DataFrame オブジェクト内のデータをループし、HTML テーブルとしてレンダリングします。最後に、テンプレート エンジンとデータを返すルートを app.py コードに追加します。
@app.route('/data') def data(): return render_template('index.html', df=df)
これでアプリケーションの準備が整いました。アプリケーションを実行すると、URL「/data」に移動してデータセットをレンダリングできます。
if __name__ == '__main__': app.run(debug=True)
これで、簡単なデータ分析 Web アプリケーションが作成されました。データ分析に Pandas と Flask を使用すると、データ処理、探索、分析を高速かつ効率的に実行できます。これは、データ駆動型アプリケーションを作成し、リアルタイムのデータ視覚化を提供する場合に役立ちます。
概要: データ分析はデータ駆動型アプリケーションの中核であり、現代のビジネスの成功にとって不可欠なものとなっています。この記事では、Python サーバーサイド プログラミングでのデータ分析に Pandas を使用する方法について説明しました。 Pandas ライブラリをインストールして使用する方法について説明し、簡単なデータ分析 Web アプリケーションを作成する方法を示しました。これらのテクノロジーは、データの迅速な処理と分析に役立ち、ビジネスに関する深い洞察を得るのに役立ちます。
以上がPython サーバー プログラミング: Pandas を使用したデータ分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

DHCP是“动态主机配置协议DynamicHostConfigurationProtocol”的首字母缩写词,它是一种网络协议,可自动为计算机网络中的客户端系统分配IP地址。它从DHCP池或在其配置中指定的IP地址范围分配客户端。虽然你可以手动为客户端系统分配静态IP,但DHCP服务器简化了这一过程,并为网络上的客户端系统动态分配IP地址。在本文中,我们将演示如何在RHEL9/RockyLinux9上安装和配置DHCP服务器。先决条件预装RHEL9或RockyLinux9具有sudo管理权限的普

一、安装nginx容器为了让nginx支持文件上传,需要下载并运行带有nginx-upload-module模块的容器:sudopodmanpulldocker.io/dimka2014/nginx-upload-with-progress-modules:latestsudopodman-d--namenginx-p83:80docker.io/dimka2014/nginx-upload-with-progress-modules该容器同时带有nginx-upload-module模块和ng

vue3项目打包发布到服务器后访问页面显示空白1、处理vue.config.js文件中的publicPath处理如下:const{defineConfig}=require('@vue/cli-service')module.exports=defineConfig({publicPath:process.env.NODE_ENV==='production'?'./':'/&

1,将java项目打成jar包这里我用到的是maven工具这里有两个项目,打包完成后一个为demo.jar,另一个为jst.jar2.准备工具1.服务器2.域名(注:经过备案)3.xshell用于连接服务器4.winscp(注:视图工具,用于传输jar)3.将jar包传入服务器直接拖动即可3.使用xshell运行jar包注:(服务器的java环境以及maven环境,各位请自行配置,这里不做描述。)cd到jar包路径下执行:nohupjava-jardemo.jar>temp.txt&

TCP客户端一个使用TCP协议实现可连续对话的客户端示例代码:importsocket#客户端配置HOST='localhost'PORT=12345#创建TCP套接字并连接服务器client_socket=socket.socket(socket.AF_INET,socket.SOCK_STREAM)client_socket.connect((HOST,PORT))whileTrue:#获取用户输入message=input("请输入要发送的消息:&

scp是securecopy的简写,是linux系统下基于ssh登陆进行安全的远程文件拷贝命令。scp是加密的,rcp是不加密的,scp是rcp的加强版。因为scp传输是加密的,可能会稍微影响一下速度。另外,scp还非常不占资源,不会提高多少系统负荷,在这一点上,rsync就远远不及它了。虽然rsync比scp会快一点,但当小文件众多的情况下,rsync会导致硬盘I/O非常高,而scp基本不影响系统正常使用。场景:假设我现在有两台服务器(这里的公网ip和内网ip相互传都可以,当然用内网ip相互传

psutil是一个跨平台的Python库,它允许你获取有关系统进程和系统资源使用情况的信息。它支持Windows、Linux、OSX、FreeBSD、OpenBSD和NetBSD等操作系统,并提供了一些非常有用的功能,如:获取系统CPU使用率、内存使用率、磁盘使用率等信息。获取进程列表、进程状态、进程CPU使用率、进程内存使用率、进程IO信息等。杀死进程、发送信号给进程、挂起进程、恢复进程等操作。使用psutil,可以很方便地监控系统的运行状况,诊断问题和优化性能。以下是一个简单的示例,演示如何

一、安装前的准备工作在进行MySQL多实例的安装前,需要进行以下准备工作:准备多个MySQL的安装包,可以从MySQL官网下载适合自己环境的版本进行下载:https://dev.mysql.com/downloads/准备多个MySQL数据目录,可以通过创建不同的目录来支持不同的MySQL实例,例如:/data/mysql1、/data/mysql2等。针对每个MySQL实例,配置一个独立的MySQL用户,该用户拥有对应的MySQL安装路径和数据目录的权限。二、基于二进制包安装多个MySQL实例


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

SublimeText3 英語版
推奨: Win バージョン、コードプロンプトをサポート!

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

ZendStudio 13.5.1 Mac
強力な PHP 統合開発環境

ゼンドスタジオ 13.0.1
強力な PHP 統合開発環境

ホットトピック



