検索
ホームページテクノロジー周辺機器AI「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

ChatGPT API が公開されて以来、多くの研究では、ChatGPT や GPT-4 などの大規模な基本モデル (LFM) の出力をトレーニング データとして使用し、小規模なモデルの機能を向上させることが選択されています。模倣学習によるモデル化。

しかし、表面的な模倣信号、不十分なトレーニング データ、厳格な評価基準の欠如などの問題により、小型モデルの実際のパフォーマンスは過大評価されてきました。

効果の観点から見ると、小規模モデルは推論プロセスよりも LFM の出力スタイルを模倣する傾向があります。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

論文リンク: https://arxiv.org/pdf/2306.02707.pdf

#これらの課題に対処するために、Microsoft は最近、LFM の推論プロセスを模倣することを学習できる 130 億パラメータの Orca モデルを提案する 51 ページの論文をリリースしました。

研究者らは、Orca が GPT-4 から説明トレース、段階的な思考プロセス、複雑な命令などを学習できるように、大規模モデル用の豊富なトレーニング信号を設計しました。 by ChatGPT 教師は指導を支援し、サンプリングと選択を通じて大規模で多様な模倣データをマイニングすることで、漸進的な学習効果をさらに高めることができます。

実験的評価では、Orca は他の SOTA 命令微調整モデルを上回り、BigBench Hard (BBH) パフォーマンスなどの複雑なゼロショット推論ベンチマークで Vicuna-13B の 2 倍のパフォーマンスを達成しました。 AGIEval では 42% のパフォーマンス向上も達成されました。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

さらに、Orca は、BBH ベンチマークや、SAT、LSAT、GRE、などの専門試験および学術試験において、ChatGPT と同等のパフォーマンスを達成しました。 GMAT のパフォーマンスの差はわずか 4% であり、それらはすべて思考連鎖なしのゼロサンプル設定で測定されています。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

#調査結果は、説明が人間によって生成されたものであっても、より高度な AI モデルによって生成されたものであっても、モデルに段階的な説明から学習させることを示しています。これらはすべて、モデルの機能とスキルを向上させるための有望な研究の方向性です。

#説明チューニング

データセット構築 ##トレーニング データの各インスタンスには、システム メッセージ、ユーザー クエリ、LFM 応答という 3 つの部分が含まれています。

システム メッセージ (システム メッセージ)

はプロンプトの先頭に配置され、基本的なコンテキスト、ガイダンス、およびその他の関連詳細を LFM に提供します。 システム メッセージは、応答の長さの変更、AI アシスタントの性格の説明、許容される LFM 動作と許容できない LFM 動作の確立、AI の応答構造の決定に使用できます。モデル。

研究者らは、創造的なコンテンツを生成し、情報クエリの問題を解決できる、さまざまな種類の LFM 応答を設計するために 16 個のシステム情報を手作りしました。プロンプトに基づいて説明とプロンプトを生成し、段階的に答えを推論します。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

ユーザー クエリ

LFM に実行させる実際のタスクを定義します。 多数の多様なユーザー クエリを取得するために、研究者は FLAN-v2 コレクションを使用して 500 万のユーザー クエリ (FLAN-5M) を抽出し、ChatGPT 応答を収集しました。 500万命令から100万命令(FLAN-1M)を抽出し、GPT-4の応答を収集した。

FLAN-v2 セットは、CoT、NiV2、T0、Flan 2021、Dialogue の 5 つのサブセットで構成されており、各サブセットには複数のタスクが含まれており、各タスクはクエリ コレクションです。 。

各サブコレクションは複数の学術データセットに関連しており、各データセットには主にゼロショット クエリと少数ショット クエリに焦点を当てた 1 つ以上のタスクがあります。

この研究では、研究者は Orca をトレーニングするためのゼロショット クエリのみをサンプリングし、Dialogue サブセットからはサンプリングしませんでした。これは、これらのクエリには ChatGPT 応答から役立つコンテキストが欠けていることが多いためです。

ChatGPT をティーチング アシスタントとして機能させる

最初に FLAN-5M データで Orca をトレーニングします(ChatGPT 強化)、続いて FLAN-1M でのトレーニングの第 2 段階 (GPT-4 強化)。

ChatGPT を中級教師アシスタントとして使用する主な理由は 2 つあります:

1. 能力のギャップ

GPT-4 のパラメータ量は明らかにされていませんが、Orca の 130 億個のパラメータは GPT-4 の何倍も小さいことは間違いなく、GPT-4 との性能差は明らかです。 ChatGPT と Orca は小規模であり、中級教師としてより適しており、このアプローチは知識の蒸留において小規模な生徒モデルの模倣学習パフォーマンスを向上させることが証明されています。

このアプローチは、一種の漸進的学習またはコース学習とみなすこともできます。そこでは、学生は最初に簡単な例から学び、次により難しい例に移ります。短い応答よりも模倣するのが難しく、大規模な教師モデルからの推論と段階的な説明スキルの向上が可能になります。

#2. コストと時間

Azure OpenAI からの大規模なデータ収集API 過度のトラフィックを防ぐための 1 分あたりのリクエストのレート制限、サービスの遅延の問題により、1 分あたりの利用可能なトークンの数が制限されること、プロンプトの長さ、トークンの完了にかかる金銭的コストなど、いくつかの制限があります。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

比較すると、ChatGPT API は GPT-4 ターミナルよりも高速かつ安価であるため、ChatGPT からは GPT-4 よりも 5 倍多くのデータが収集されます。 。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

さまざまなシステム メッセージに対応する ChatGPT と GPT-4 の応答長の分布から、GPT-4 の応答が次のようになっていることがわかります。 ChatGPT 1.5x よりも平均して長いため、Orca は教師の説明の複雑さから徐々に学習することができ、アブレーション実験を通じて教師の支援の効果を実証できます。

トレーニング

単語セグメンテーションの段階で、研究者らはLLaMAのバイトペアエンコーディングを使用しました。 (BPE) トークナイザー。複数桁の数値が複数の 1 桁に分割され、バイトにフォールバックして未知の UTF-8 文字を分解する入力サンプルを処理します。

可変長シーケンスを処理するために、LLaMA トークナイザーの語彙にフィラー ワード [[PAD]] が導入され、最終的な語彙には 32001 個のトークンが含まれます

トレーニング プロセスを最適化し、利用可能なコンピューティング リソースを効果的に利用するために、研究者はモデルをトレーニングする前にパッキング テクノロジを使用して複数の入力インスタンスをシーケンスに連結しました。

パッキング プロセス中、連結されたシーケンスの合計の長さは max_len=2048 トークンを超えません。入力サンプルはランダムにシャッフルされ、いくつかのグループに分割されます。各グループの長さ連結されたシーケンスの最大 max_len

トレーニング データ内のブースティング命令の長さの分布を考慮すると、各シーケンスのパッキング ファクターは 2.7

になります。 Orca をトレーニングするために、研究者らは教師モデルによって生成されたトークンの損失のみを計算することを選択しました。これは、システム情報とタスク指示に条件付けされた応答を生成する方法を学習することで、モデルが最も関連性が高く有益なトークンからの学習に重点を置くことができることを意味します。トレーニングプロセスの効率の向上、全体的な効率と有効性。

最後に、Orca は 80 GB のメモリを備えた 20 個の NVIDIA A100 GPU でトレーニングされました。最初に FLAN-5M (ChatGPT 拡張) で 4 エポック間トレーニングされ、160 時間かかりました。次に FLAN-1M (GPT) でトレーニングされました。 -4 拡張) を実行し、4 エポックのトレーニングを継続します

トラフィック制限、端末の負荷と応答の長さの問題により、複数の GPT-3.5-turbo (ChatGPT) および GPT-4 端末データ収集にはそれぞれ 2 週間と 3 週間かかりました。

実験部分

研究者たちは主に Orca の推論能力を検証しました。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

AGIEval 実験でわかるように、Orca のパフォーマンスは Text-da-Vinci-003 と同等であり、ChatGPT のパフォーマンスの 88% を達成しています。しかし、GPT-4 には大幅に遅れています

分析タスクと推論タスクでは、Vicuna のパフォーマンスが大幅に低下し、ChatGPT の品質の 62% しか維持できませんでした。これは、このオープンソース言語モデルの推論能力が非常に低いことを示しています。 。

Orca は Text-da-Vinci-003 と同等のパフォーマンスを発揮しますが、それでも ChatGPT より 5 ポイント低く、数学関連のタスク (SAT、GRE、GMAT) では Orca の方が優れたパフォーマンスを発揮します。 ) ChatGPT との間には大きな隔たりがあります。

Vicuna と比較すると、Orca はより強力なパフォーマンスを示し、すべてのカテゴリで Vicuna を上回り、平均相対的な改善率は 42% です。

GPT-4 は他のすべてのモデルをはるかに上回っていますが、このベンチマークにはまだ改善の余地が大きく、現在すべてのモデルのパフォーマンスは人間のスコアを大幅に下回っています。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

Orca のパフォーマンスは、システム メッセージの種類によって大きく異なります。トレーニング済みモデルの場合、空のシステム メッセージが適切に機能する傾向があります。

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

Orca は、さまざまなタスクの 325 サンプルで ChatGPT (Orca-beats-ChatGPT の例) を上回っています。そのほとんどは LogiQA (29%) からのものです。一方、他の LSAT タスクと SAT-English タスクの割合はそれぞれ 10% 未満です。

Big-Bench Hard Results データセットの推論評価結果は、すべてのタスクで Orca のパフォーマンスが全体的に優れていることを示しています。パフォーマンスは ChatGPT よりわずかに優れていますが、GPT-4 よりも大幅に劣っており、Vicuna のパフォーマンスよりも 113% 高いです

「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力

以上が「真似して学ぶ」というのは単なる決まり文句なのでしょうか?解説微調整+130億パラメータ Orca:ChatGPTに匹敵する推理力の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
ai合并图层的快捷键是什么ai合并图层的快捷键是什么Jan 07, 2021 am 10:59 AM

ai合并图层的快捷键是“Ctrl+Shift+E”,它的作用是把目前所有处在显示状态的图层合并,在隐藏状态的图层则不作变动。也可以选中要合并的图层,在菜单栏中依次点击“窗口”-“路径查找器”,点击“合并”按钮。

ai橡皮擦擦不掉东西怎么办ai橡皮擦擦不掉东西怎么办Jan 13, 2021 am 10:23 AM

ai橡皮擦擦不掉东西是因为AI是矢量图软件,用橡皮擦不能擦位图的,其解决办法就是用蒙板工具以及钢笔勾好路径再建立蒙板即可实现擦掉东西。

谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开谷歌超强AI超算碾压英伟达A100!TPU v4性能提升10倍,细节首次公开Apr 07, 2023 pm 02:54 PM

虽然谷歌早在2020年,就在自家的数据中心上部署了当时最强的AI芯片——TPU v4。但直到今年的4月4日,谷歌才首次公布了这台AI超算的技术细节。论文地址:https://arxiv.org/abs/2304.01433相比于TPU v3,TPU v4的性能要高出2.1倍,而在整合4096个芯片之后,超算的性能更是提升了10倍。另外,谷歌还声称,自家芯片要比英伟达A100更快、更节能。与A100对打,速度快1.7倍论文中,谷歌表示,对于规模相当的系统,TPU v4可以提供比英伟达A100强1.

ai可以转成psd格式吗ai可以转成psd格式吗Feb 22, 2023 pm 05:56 PM

ai可以转成psd格式。转换方法:1、打开Adobe Illustrator软件,依次点击顶部菜单栏的“文件”-“打开”,选择所需的ai文件;2、点击右侧功能面板中的“图层”,点击三杠图标,在弹出的选项中选择“释放到图层(顺序)”;3、依次点击顶部菜单栏的“文件”-“导出”-“导出为”;4、在弹出的“导出”对话框中,将“保存类型”设置为“PSD格式”,点击“导出”即可;

GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑GPT-4的研究路径没有前途?Yann LeCun给自回归判了死刑Apr 04, 2023 am 11:55 AM

Yann LeCun 这个观点的确有些大胆。 「从现在起 5 年内,没有哪个头脑正常的人会使用自回归模型。」最近,图灵奖得主 Yann LeCun 给一场辩论做了个特别的开场。而他口中的自回归,正是当前爆红的 GPT 家族模型所依赖的学习范式。当然,被 Yann LeCun 指出问题的不只是自回归模型。在他看来,当前整个的机器学习领域都面临巨大挑战。这场辩论的主题为「Do large language models need sensory grounding for meaning and u

ai顶部属性栏不见了怎么办ai顶部属性栏不见了怎么办Feb 22, 2023 pm 05:27 PM

ai顶部属性栏不见了的解决办法:1、开启Ai新建画布,进入绘图页面;2、在Ai顶部菜单栏中点击“窗口”;3、在系统弹出的窗口菜单页面中点击“控制”,然后开启“控制”窗口即可显示出属性栏。

强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程强化学习再登Nature封面,自动驾驶安全验证新范式大幅减少测试里程Mar 31, 2023 pm 10:38 PM

引入密集强化学习,用 AI 验证 AI。 自动驾驶汽车 (AV) 技术的快速发展,使得我们正处于交通革命的风口浪尖,其规模是自一个世纪前汽车问世以来从未见过的。自动驾驶技术具有显着提高交通安全性、机动性和可持续性的潜力,因此引起了工业界、政府机构、专业组织和学术机构的共同关注。过去 20 年里,自动驾驶汽车的发展取得了长足的进步,尤其是随着深度学习的出现更是如此。到 2015 年,开始有公司宣布他们将在 2020 之前量产 AV。不过到目前为止,并且没有 level 4 级别的 AV 可以在市场

ai移动不了东西了怎么办ai移动不了东西了怎么办Mar 07, 2023 am 10:03 AM

ai移动不了东西的解决办法:1、打开ai软件,打开空白文档;2、选择矩形工具,在文档中绘制矩形;3、点击选择工具,移动文档中的矩形;4、点击图层按钮,弹出图层面板对话框,解锁图层;5、点击选择工具,移动矩形即可。

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

MantisBT

MantisBT

Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

PhpStorm Mac バージョン

PhpStorm Mac バージョン

最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

VSCode Windows 64 ビットのダウンロード

VSCode Windows 64 ビットのダウンロード

Microsoft によって発売された無料で強力な IDE エディター

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター