検索
ホームページ運用・保守安全性ローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事

昨日、データベースのエラー情報をより正確に診断できるCHATGLM-6Bの対話モデルを微調整する220時間の微調整訓練が終了しました。

ローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事

# しかし、10 日近く待ったこのトレーニングの最終結果は残念なものでした。サンプル カバレッジを小さくして行った前回のトレーニングと比較すると、その差は依然としてかなり大きいです。

ローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事

#この結果はまだ少し残念です。このモデルは基本的に実用的ではありません。価値があります。 。パラメータやトレーニングセットを再調整して再度トレーニングを行う必要があるようです。大規模な言語モデルのトレーニングは軍拡競争であり、優れた機器がなければプレイすることは不可能です。実験設備もアップグレードしなければ、数十日が無駄になってしまいそうだ。

最近の微調整トレーニングの失敗例から判断すると、微調整トレーニングを完了するのは簡単ではありません。異なるタスク目標がトレーニング用に混合されます。異なるタスク目標には異なるトレーニング パラメータが必要になる場合があり、最終的なトレーニング セットが特定のタスクのニーズを満たすことができなくなります。したがって、PTUNING は非常に特定のタスクにのみ適しており、混合タスクには必ずしも適しているわけではありません。混合タスクを目的としたモデルでは FINETUNE を使用する必要がある場合があります。これは、数日前に友人とコミュニケーションをとっているときにみんなが言ったことと似ています。

実際、モデルのトレーニングが難しいため、自分でモデルをトレーニングすることを諦め、代わりにローカルのナレッジ ベースをベクトル化してより正確に取得してから使用する人もいます。 AUTOPROMPT を使用してそれを取得します。 最終結果では、音声モデルに質問するための自動プロンプトが生成されます。この目標は、langchain を使用すると簡単に達成できます。

ローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事

動作原理は、ローダーを介してローカル ドキュメントをテキストとしてロードし、テキストはストローク テキスト フラグメントに分割され、エンコード後にベクトル ストレージに書き込まれ、クエリに使用されます。クエリ結果が出ると、プロンプト テンプレートを使用して LLM に質問するためのプロンプトが自動的に作成され、LLM が最終的な回答を生成します。

この作業にはもう 1 つの重要なポイントがあります。1 つは、ローカル知識ベース内の知識をより正確に検索することです。これは、検索におけるベクトル ストレージによって実現されます。現在、ターゲットとされています。中国語と英語のローカル ナレッジ ベースでは、ナレッジ ベースのベクトル化と検索のためのソリューションが多数あり、ナレッジ ベースにより適したソリューションを選択できます。


ローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事

#上記は、vicuna-13b で渡された OB に関するナレッジ ベースです。 Q&A の場合、上記はローカル ナレッジ ベースを使用せずに LLM 機能を使用した回答であり、以下はローカル ナレッジ ベースをロードした後の回答です。パフォーマンスが明らかに向上していることがわかります。

ローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事

先ほどの ORA エラーの問題を見てみましょう。ローカル ナレッジ ベースを使用する前、LLM は基本的にナンセンスですが、ローカルのナレッジ ベースをロードした後でも、この回答はまだ満足のいくものです。記事内のタイプミスもナレッジ ベースのエラーです。実際、PTUNING で使用されるトレーニング セットも、このローカル ナレッジ ベースを通じて生成されます。

私たちは最近踏んだ落とし穴から経験を積むことができます。まず、ptuning の難易度は思ったよりも高く、finetune よりも必要な装備は少ないものの、訓練難易度は決して低くありません。次に、LLM 機能を向上させるために、Langchain と自動プロンプトを介してローカルのナレッジ ベースを使用することをお勧めします。ほとんどのエンタープライズ アプリケーションでは、ローカルのナレッジ ベースが整理され、適切なベクトル化ソリューションが選択されている限り、次のような結果が得られるはずです。 PTUNING/FINETUNE よりも劣りません。 3 番目に、これも前回述べたように、LLM の能力が非常に重要です。使用する基本モデルとして強力な LLM を選択する必要があります。組み込みモデルは機能を部分的に向上させることしかできず、決定的な役割を果たすことはできません。 4 番目に、データベース関連の知識に関しては、vicuna-13b は非常に優れた能力を持っています。

今朝早くクライアントに連絡しに行かなければなりません。朝は時間が限られているので、少しだけ文章を書きます。これについて何かご意見がございましたら、ディスカッション用にメッセージを残してください (ディスカッションはあなたと私にのみ表示されます)。私もこの道を一人で歩いています。アドバイスをくれる仲間がいることを願っています。

以上がローカルナレッジベースを使用してLLMのパフォーマンスを最適化する方法に関する記事の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
如何优化Java开发中的文件压缩解压性能如何优化Java开发中的文件压缩解压性能Jul 01, 2023 am 11:54 AM

如何优化Java开发中的文件压缩解压性能随着互联网技术的不断发展,文件传输和存储成为我们日常开发中经常遇到的需求。为了减小网络传输的带宽消耗和文件存储的空间占用,我们通常需要对文件进行压缩。在Java开发中,常用的文件压缩格式有ZIP和GZIP。本文将介绍如何优化Java开发中的文件压缩解压性能,帮助提高效率。一、合理选择压缩算法在Java开发中,进行文件压

电脑性能看哪些方面电脑性能看哪些方面Dec 23, 2020 pm 01:54 PM

电脑性能看如下几个方面:1、电脑安装的操作系统的版本;2、电脑所配置的处理器类型;3、电脑安装的内存大小;4、操作系统是32位的还是64位的。

Java开发中如何优化字符串查找性能Java开发中如何优化字符串查找性能Jun 29, 2023 am 11:12 AM

在Java开发中,字符串查找是一个常见且关键的操作。无论是在文本处理、数据分析还是系统日志分析等应用场景中,字符串的查找性能都对程序的整体性能有着重要影响。因此,如何优化字符串查找性能成为了Java开发中不可忽视的问题。一、使用indexOf()方法代替contains()方法在字符串查找中,Java提供了两个常用的方法:indexOf()和contains

Java随机数生成性能优化方法Java随机数生成性能优化方法Jun 30, 2023 pm 12:25 PM

如何优化Java开发中的随机数生成性能随机数在计算机科学中有广泛的应用,特别是在密码学、模拟、游戏等领域。在Java开发中,我们常常需要生成随机数来满足各种需求。然而,随机数生成的性能通常是开发者关注的问题之一。本文将探讨如何优化Java开发中的随机数生成性能。使用ThreadLocalRandom类在Java7中引入了ThreadLocalRandom类

Vue3中的lazy函数详解:懒加载组件提高应用性能Vue3中的lazy函数详解:懒加载组件提高应用性能Jun 19, 2023 am 08:39 AM

Vue3是一款流行的JavaScript框架,它具有易学易用、高效稳定的特点,尤其擅长构建单页应用程序(SPA)。Vue3中的lazy函数,作为懒加载组件的利器之一,可以很大程度上提高应用程序的性能。本文将详解Vue3中的lazy函数的使用方法与原理,以及它在实际开发中的应用场景和优点。什么是懒加载?在传统的前后端分离的开发中,前端开发人员往往需要处理大量的

如何通过设置MySQL缓存来提高性能如何通过设置MySQL缓存来提高性能May 11, 2023 am 08:09 AM

MySQL是一种常用的关系型数据库管理系统(RDBMS),在各种应用场景下都得到广泛的应用。然而,在高并发、大数据量的情况下,MySQL数据库的性能受到挑战,特别是在读写操作频繁的场景下,容易出现性能瓶颈。为了提高MySQL数据库的性能,可以通过设置MySQL缓存来减少数据库的IO操作,从而提高MySQL的查询效率。在本文中,我们将介绍如何通过设置MySQL

一篇学会本地知识库对LLM的性能优化一篇学会本地知识库对LLM的性能优化Jun 12, 2023 am 09:23 AM

昨天一个跑了220个小时的微调训练完成了,主要任务是想在CHATGLM-6B上微调出一个能够较为精确的诊断数据库错误信息的对话模型来。不过这个等了将近十天的训练最后的结果令人失望,比起我之前做的一个样本覆盖更小的训练来,差的还是挺大的。这样的结果还是有点令人失望的,这个模型基本上是没有实用价值的。看样子需要重新调整参数与训练集,再做一次训练。大语言模型的训练是一场军备竞赛,没有好的装备是玩不起来的。看样子我们也必须要升级一下实验室的装备了,否则没有几个十天可以浪费。从最近的几次失败的微调训练来看

自动驾驶决策规划技术详解自动驾驶决策规划技术详解Apr 04, 2023 pm 02:35 PM

随着深度强化学习技术的快速发展,越来越多的研究团队开始将其应用于自动驾驶决策规划中,将行为决策与运动规划模块相融合,直接学习得到行驶轨迹。 自动驾驶中的决策规划模块是衡量和评价自动驾驶能力最核心的指标之一,它的主要任务是在接收到传感器的各种感知信息之后,对当前环境作出分析,然后对底层控制模块下达指令。典型的决策规划模块可以分为三个层次:全局路径规划、行为决策、运动规划。01 引言在一套完整的自动驾驶系统中,如果将感知模块比作人的眼睛和耳朵,那么决策规划就是自动驾驶的大脑。大脑在接收到传感器的各种

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

AI Hentai Generator

AI Hentai Generator

AIヘンタイを無料で生成します。

ホットツール

SublimeText3 Mac版

SublimeText3 Mac版

神レベルのコード編集ソフト(SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SecLists

SecLists

SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

AtomエディタMac版ダウンロード

AtomエディタMac版ダウンロード

最も人気のあるオープンソースエディター

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

強力な PHP 統合開発環境