Python による自然言語処理の例: 感情分析
人工知能の発展に伴い、自然言語処理 (NLP) はさまざまな分野でますます注目を集めています。中でも感情分析は NLP 応用の重要な方向性です。センチメント分析を使用すると、製品、サービス、イベントに対するユーザーの感情的傾向を分析でき、企業が消費者のニーズをより深く理解し、マーケティング戦略の策定を促進するのに役立ちます。この記事ではPythonで感情分析を行った例を紹介します。
- 必要なライブラリをインストールする
Python で感情分析を実行するには、サードパーティ ライブラリの Natural Language Toolkit (NLTK) と TwitterAPI を使用する必要があります。 pip を使用して、次の 2 つのライブラリをインストールできます。
pip install nltk pip install TwitterAPI
- データの前処理
センチメント分析を実行する前に、テキストを前処理する必要があります。テキストを一律に小文字に変換し、句読点、数字、ストップワードなどの無関係な情報を削除できます。前処理コードは次のとおりです。
import re from nltk.corpus import stopwords def clean_text(text): text = text.lower() # 将文本转换成小写字母 text = re.sub(r'[^ws]', '', text) # 去除标点符号 text = re.sub(r'd+', '', text) # 去除数字 stop_words = set(stopwords.words('english')) words = text.split() words = [w for w in words if w not in stop_words] # 去除停用词 text = ' '.join(words) return text
- 感情分析モデル
次に、感情分析モデルを構築する必要があります。感情分析は教師あり学習であるため (つまり、ラベル付きデータが必要です)、モデルの構築にはラベル付きトレーニング データが必要です。ここでは、NLTK の映画レビュー データセットが使用されています。このデータセットには、肯定的または否定的な感情的傾向を持つ 1000 件のレビューが含まれています。これらのコメントにはフラグが付けられています。
import nltk from nltk.corpus import movie_reviews import random documents = [(list(movie_reviews.words(fileid)), category) for category in movie_reviews.categories() for fileid in movie_reviews.fileids(category)] random.shuffle(documents)
トレーニング データを取得した後、nltk の NaiveBayesClassifier を使用して単純ベイズ分類器を構築できます。コードは次のとおりです。
all_words = nltk.FreqDist(w.lower() for w in movie_reviews.words()) word_features = list(all_words.keys())[:2000] def document_features(document): document_words = set(document) features = {} for word in word_features: features['contains({})'.format(word)] = (word in document_words) return features featuresets = [(document_features(d), c) for (d,c) in documents] train_set, test_set = featuresets[200:], featuresets[:200] classifier = nltk.NaiveBayesClassifier.train(train_set)
この分類器はナイーブ ベイズ アルゴリズムに基づいており、分類にトレーニング データの特性を使用します。この例では、語形を特徴付ける「contains (word)」関数が使用されています。この関数は、文書に単語が含まれているかどうかをチェックします。
- 感情分析アプリケーション
モデルの確立が完了したら、それを使用して感情分析を実行できます。この例では、Twitter API を使用して Twitter からツイートを取得し、そのツイートに対してセンチメント分析を実行します。
from TwitterAPI import TwitterAPI import json consumer_key = 'your consumer key' consumer_secret = 'your consumer secret' access_token_key = 'your access token key' access_token_secret = 'your access token secret' api = TwitterAPI(consumer_key, consumer_secret, access_token_key, access_token_secret) def analyze_tweet(tweet): tweet_text = tweet['text'] tweet_clean = clean_text(tweet_text) tweet_features = document_features(tweet_clean.split()) sentiment = classifier.classify(tweet_features) return sentiment keywords = 'Trump' for tweet in api.request('search/tweets', {'q': keywords, 'lang': 'en', 'count': 10}): sentiment = analyze_tweet(tweet) print(tweet['text']) print(sentiment) print(' ')
このコード スニペットは TwitterAPI を使用して、キーワード「トランプ」を含む最新の 10 件のツイートを取得します。そして、各ツイートに対して感情分析を行い、感情傾向を出力します。
Twitter に加えて、このモデルは他のテキスト データの感情分析にも使用できます。
結論
この記事では、Python での感情分析の例を紹介します。この例では、トレーニングされたナイーブ ベイズ分類器を使用してテキストを分類し、テキストの感情的傾向を判断するために使用できます。感情分析は、マーケティングやソーシャル メディアの監視などの分野で広く使用できます。
以上がPython での自然言語処理の例: 感情分析の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Pythonを1日2時間学ぶだけで十分ですか?それはあなたの目標と学習方法に依存します。 1)明確な学習計画を策定し、2)適切な学習リソースと方法を選択します。3)実践的な実践とレビューとレビューと統合を練習および統合し、統合すると、この期間中にPythonの基本的な知識と高度な機能を徐々に習得できます。

Web開発におけるPythonの主要なアプリケーションには、DjangoおよびFlaskフレームワークの使用、API開発、データ分析と視覚化、機械学習とAI、およびパフォーマンスの最適化が含まれます。 1。DjangoandFlask Framework:Djangoは、複雑な用途の迅速な発展に適しており、Flaskは小規模または高度にカスタマイズされたプロジェクトに適しています。 2。API開発:フラスコまたはdjangorestFrameworkを使用して、Restfulapiを構築します。 3。データ分析と視覚化:Pythonを使用してデータを処理し、Webインターフェイスを介して表示します。 4。機械学習とAI:Pythonは、インテリジェントWebアプリケーションを構築するために使用されます。 5。パフォーマンスの最適化:非同期プログラミング、キャッシュ、コードを通じて最適化

Pythonは開発効率でCよりも優れていますが、Cは実行パフォーマンスが高くなっています。 1。Pythonの簡潔な構文とリッチライブラリは、開発効率を向上させます。 2.Cのコンピレーションタイプの特性とハードウェア制御により、実行パフォーマンスが向上します。選択を行うときは、プロジェクトのニーズに基づいて開発速度と実行効率を比較検討する必要があります。

Pythonの実際のアプリケーションには、データ分析、Web開発、人工知能、自動化が含まれます。 1)データ分析では、PythonはPandasとMatplotlibを使用してデータを処理および視覚化します。 2)Web開発では、DjangoおよびFlask FrameworksがWebアプリケーションの作成を簡素化します。 3)人工知能の分野では、TensorflowとPytorchがモデルの構築と訓練に使用されます。 4)自動化に関しては、ファイルのコピーなどのタスクにPythonスクリプトを使用できます。

Pythonは、データサイエンス、Web開発、自動化スクリプトフィールドで広く使用されています。 1)データサイエンスでは、PythonはNumpyやPandasなどのライブラリを介してデータ処理と分析を簡素化します。 2)Web開発では、DjangoおよびFlask Frameworksにより、開発者はアプリケーションを迅速に構築できます。 3)自動化されたスクリプトでは、Pythonのシンプルさと標準ライブラリが理想的になります。

Pythonの柔軟性は、マルチパラダイムサポートと動的タイプシステムに反映されていますが、使いやすさはシンプルな構文とリッチ標準ライブラリに由来しています。 1。柔軟性:オブジェクト指向、機能的および手続き的プログラミングをサポートし、動的タイプシステムは開発効率を向上させます。 2。使いやすさ:文法は自然言語に近く、標準的なライブラリは幅広い機能をカバーし、開発プロセスを簡素化します。

Pythonは、初心者から上級開発者までのすべてのニーズに適した、そのシンプルさとパワーに非常に好まれています。その汎用性は、次のことに反映されています。1)学習と使用が簡単、シンプルな構文。 2)Numpy、Pandasなどの豊富なライブラリとフレームワーク。 3)さまざまなオペレーティングシステムで実行できるクロスプラットフォームサポート。 4)作業効率を向上させるためのスクリプトおよび自動化タスクに適しています。

はい、1日2時間でPythonを学びます。 1.合理的な学習計画を作成します。2。適切な学習リソースを選択します。3。実践を通じて学んだ知識を統合します。これらの手順は、短時間でPythonをマスターするのに役立ちます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MinGW - Minimalist GNU for Windows
このプロジェクトは osdn.net/projects/mingw に移行中です。引き続きそこでフォローしていただけます。 MinGW: GNU Compiler Collection (GCC) のネイティブ Windows ポートであり、ネイティブ Windows アプリケーションを構築するための自由に配布可能なインポート ライブラリとヘッダー ファイルであり、C99 機能をサポートする MSVC ランタイムの拡張機能が含まれています。すべての MinGW ソフトウェアは 64 ビット Windows プラットフォームで実行できます。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1
使いやすく無料のコードエディター
