さまざまな分野で機械学習が広く応用されるにつれ、プログラマーは機械学習モデルを迅速かつ効果的に開発する方法にますます注目を集めています。 Python や R などの従来の機械学習言語は、機械学習の分野の標準ツールとなっていますが、Go 言語の同時実行性とパフォーマンスに魅了されるプログラマーが増えています。この記事では、機械学習開発に Go 言語を使用する方法について説明します。
- Go のインストール
まず、オペレーティング システムに Go をインストールする必要があります。 Go公式サイトからインストーラーをダウンロードしてインストールできます。インストールが完了したら、コマンド ラインで go version
コマンドを実行して、Go が正しくインストールされているかどうかを確認します。
- 機械学習ライブラリをインストールする
Go には組み込みの機械学習ライブラリはありませんが、tensorflow、ゴルゴニア、ゴムルなど。ここでは、gorgonia を例として、Go を機械学習に使用する方法を紹介します。
コマンド ラインで次のコマンドを実行して、gorgonia をインストールします:
go get gorgonia.org/gorgonia
インストールが完了したら、次のコマンドを実行して、正しくインストールされているかどうかを確認できます:
package main import "gorgonia.org/gorgonia" func main() { gorgonia.NewGraph() }
エラーが報告されない場合は、gorgonia が正常にインストールされたことを説明してください。
- Gorgonia の使用
次に、Gorgonia を使用して、手書き数字の画像を分類するための基本的なニューラル ネットワークを構築します。まず、データを準備する必要があります。 gorgenia には mnist データセットをダウンロードして解凍するために使用できる mnist パッケージがあります。
package main import ( "fmt" "gorgonia.org/datasets/mnist" "gorgonia.org/gorgonia" ) func main() { // 下载和解压缩 mnist 数据集 trainData, testData, err := mnist.Load(root) if err != nil { panic(err) } // 打印训练和测试数据及标签的形状 fmt.Printf("train data shape: %v ", trainData.X.Shape()) fmt.Printf("train labels shape: %v ", trainData.Y.Shape()) fmt.Printf("test data shape: %v ", testData.X.Shape()) fmt.Printf("test labels shape: %v ", testData.Y.Shape()) }
出力結果は次のとおりです。
train data shape: (60000, 28, 28, 1) train labels shape: (60000, 10) test data shape: (10000, 28, 28, 1) test labels shape: (10000, 10)
トレーニング データには 60,000 個の 28x28 グレースケール画像が含まれており、テスト データには同じ形状の 10,000 個の画像が含まれています。各ラベルは、画像が属する番号を表す 10 次元のベクトルです。
次に、ニューラル ネットワークのアーキテクチャを定義します。 2 つの隠れ層を持つディープ ニューラル ネットワークを使用します。各隠れ層には 128 個のニューロンがあります。出力層で relu 活性化関数と Softmax 活性化関数を使用して画像を分類します。
dataShape := trainData.X.Shape() dataSize := dataShape[0] inputSize := dataShape[1] * dataShape[2] * dataShape[3] outputSize := testData.Y.Shape()[1] // 构建神经网络 g := gorgonia.NewGraph() x := gorgonia.NewTensor(g, tensor.Float32, 4, gorgonia.WithShape(dataSize, dataShape[1], dataShape[2], dataShape[3]), gorgonia.WithName("x")) y := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(dataSize, outputSize), gorgonia.WithName("y")) hiddenSize := 128 hidden1 := gorgonia.Must(gorgonia.NodeFromAny(g, tensor.Zero(tensor.Float32, hiddenSize), gorgonia.WithName("hidden1"))) hidden2 := gorgonia.Must(gorgonia.NodeFromAny(g, tensor.Zero(tensor.Float32, hiddenSize), gorgonia.WithName("hidden2"))) w1 := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(inputSize, hiddenSize), gorgonia.WithName("w1")) w2 := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(hiddenSize, hiddenSize), gorgonia.WithName("w2")) w3 := gorgonia.NewMatrix(g, tensor.Float32, gorgonia.WithShape(hiddenSize, outputSize), gorgonia.WithName("w3")) b1 := gorgonia.NewVector(g, tensor.Float32, gorgonia.WithShape(hiddenSize), gorgonia.WithName("b1")) b2 := gorgonia.NewVector(g, tensor.Float32, gorgonia.WithShape(hiddenSize), gorgonia.WithName("b2")) b3 := gorgonia.NewVector(g, tensor.Float32, gorgonia.WithShape(outputSize), gorgonia.WithName("b3")) hidden1Dot, err1 := gorgonia.Mul(x, w1) hidden1Add, err2 := gorgonia.BroadcastAdd(hidden1Dot, b1, []byte{0}) hidden1Activate := gorgonia.Must(gorgonia.Rectify(hidden1Add)) hidden2Dot, err3 := gorgonia.Mul(hidden1Activate, w2) hidden2Add, err4 := gorgonia.BroadcastAdd(hidden2Dot, b2, []byte{0}) hidden2Activate := gorgonia.Must(gorgonia.Rectify(hidden2Add)) yDot, err5 := gorgonia.Mul(hidden2Activate, w3) yAdd, err6 := gorgonia.BroadcastAdd(yDot, b3, []byte{0}) ySoftMax := gorgonia.Must(gorgonia.SoftMax(yAdd))
確率的勾配降下法 (SGD) 法を使用してモデルをトレーニングします。各エポックでは、トレーニング データをバッチに分割し、勾配を計算し、各バッチのパラメーターを更新します。
iterations := 10 batchSize := 32 learningRate := 0.01 // 定义代价函数(交叉熵) cost := gorgonia.Must(gorgonia.Mean(gorgonia.Must(gorgonia.Neg(gorgonia.Must(gorgonia.HadamardProd(y, gorgonia.Must(gorgonia.Log(ySoftMax))))))) // 定义优化器 optimizer := gorgonia.NewVanillaSolver(g, gorgonia.WithLearnRate(learningRate)) // 表示模型将进行训练 vm := gorgonia.NewTapeMachine(g) // 进行训练 for i := 0; i < iterations; i++ { fmt.Printf("Epoch %d ", i+1) for j := 0; j < dataSize; j += batchSize { upperBound := j + batchSize if upperBound > dataSize { upperBound = dataSize } xBatch := trainData.X.Slice(s{j, upperBound}) yBatch := trainData.Y.Slice(s{j, upperBound}) if err := gorgonia.Let(x, xBatch); err != nil { panic(err) } if err := gorgonia.Let(y, yBatch); err != nil { panic(err) } if err := vm.RunAll(); err != nil { panic(err) } if err := optimizer.Step(gorgonia.NodesToValueGrads(w1, b1, w2, b2, w3, b3)); err != nil { panic(err) } } // 测试准确率 xTest := testData.X yTest := testData.Y if err := gorgonia.Let(x, xTest); err != nil { panic(err) } if err := gorgonia.Let(y, yTest); err != nil { panic(err) } if err := vm.RunAll(); err != nil { panic(err) } predict := gorgonia.Must(gorgonia.Argmax(ySoftMax, 1)) label := gorgonia.Must(gorgonia.Argmax(yTest, 1)) correct := 0 for i := range label.Data().([]float32) { if predict.Data().([]float32)[i] == label.Data().([]float32)[i] { correct++ } } fmt.Printf("Accuracy: %v ", float32(correct)/float32(len(label.Data().([]float32)))) }
簡単な機械学習モデルの開発が完了しました。隠れ層を追加したり、さまざまなオプティマイザーを使用したりするなど、ニーズに応じて拡張および最適化できます。
- 概要
この記事では、機械学習開発に Go 言語を使用する方法について説明し、gorgonia と mnist データ セットを例として取り上げ、その方法を示しました。手書き数字の画像を分類するための基本的なニューラル ネットワークを構築します。 Go は機械学習の分野で選択される言語ではないかもしれませんが、同時実行性とパフォーマンスに優れた利点があり、シナリオによっては良い選択となる可能性があります。
以上が機械学習開発に Go 言語を使用するにはどうすればよいですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Cは、ハードウェアリソースと高性能の最適化が必要なシナリオにより適していますが、Golangは迅速な開発と高い並行性処理が必要なシナリオにより適しています。 1.Cの利点は、ハードウェア特性と高い最適化機能に近いものにあります。これは、ゲーム開発などの高性能ニーズに適しています。 2.Golangの利点は、その簡潔な構文と自然な並行性サポートにあり、これは高い並行性サービス開発に適しています。

Golangは実際のアプリケーションに優れており、そのシンプルさ、効率性、並行性で知られています。 1)同時プログラミングはゴルチンとチャネルを通じて実装されます。2)柔軟なコードは、インターフェイスと多型を使用して記述されます。3)ネット/HTTPパッケージを使用したネットワークプログラミングを簡素化、4)効率的な同時クローラーを構築する、5)ツールと最高の実践を通じてデバッグと最適化。

GOのコア機能には、ガベージコレクション、静的リンク、並行性サポートが含まれます。 1. GO言語の並行性モデルは、GoroutineとChannelを通じて効率的な同時プログラミングを実現します。 2.インターフェイスと多型は、インターフェイスメソッドを介して実装されているため、異なるタイプを統一された方法で処理できます。 3.基本的な使用法は、関数定義と呼び出しの効率を示しています。 4。高度な使用法では、スライスは動的なサイズ変更の強力な機能を提供します。 5.人種条件などの一般的なエラーは、Getest Raceを通じて検出および解決できます。 6.パフォーマンス最適化Sync.Poolを通じてオブジェクトを再利用して、ゴミ収集圧力を軽減します。

GO言語は、効率的でスケーラブルなシステムの構築においてうまく機能します。その利点には次のものがあります。1。高性能:マシンコードにコンパイルされ、速度速度が速い。 2。同時プログラミング:ゴルチンとチャネルを介してマルチタスクを簡素化します。 3。シンプルさ:簡潔な構文、学習コストとメンテナンスコストの削減。 4。クロスプラットフォーム:クロスプラットフォームのコンパイル、簡単な展開をサポートします。

SQLクエリの結果の並べ替えについて混乱しています。 SQLを学習する過程で、しばしば混乱する問題に遭遇します。最近、著者は「Mick-SQL Basics」を読んでいます...

テクノロジースタックの収束とテクノロジーの選択の関係ソフトウェア開発におけるテクノロジーの選択、テクノロジースタックの選択と管理は非常に重要な問題です。最近、一部の読者が提案しています...

ゴーラン...

GO言語で3つの構造を比較および処理する方法。 GOプログラミングでは、2つの構造の違いを比較し、これらの違いを...


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

WebStorm Mac版
便利なJavaScript開発ツール

SublimeText3 中国語版
中国語版、とても使いやすい

Dreamweaver Mac版
ビジュアル Web 開発ツール

mPDF
mPDF は、UTF-8 でエンコードされた HTML から PDF ファイルを生成できる PHP ライブラリです。オリジナルの作者である Ian Back は、Web サイトから「オンザフライ」で PDF ファイルを出力し、さまざまな言語を処理するために mPDF を作成しました。 HTML2FPDF などのオリジナルのスクリプトよりも遅く、Unicode フォントを使用すると生成されるファイルが大きくなりますが、CSS スタイルなどをサポートし、多くの機能強化が施されています。 RTL (アラビア語とヘブライ語) や CJK (中国語、日本語、韓国語) を含むほぼすべての言語をサポートします。ネストされたブロックレベル要素 (P、DIV など) をサポートします。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
