Generative Adversarial Networks (GAN、Generative Adversarial Networks) は、互いに競合する 2 つのニューラル ネットワークを通じて新しいデータを生成する深層学習アルゴリズムです。 GAN は、画像、音声、テキスト、その他の分野の生成タスクに広く使用されています。この記事では、Python を使用して手書き数字の画像を生成する GAN アルゴリズムの例を作成します。
- データセットの準備
MNIST データ セットをトレーニング データ セットとして使用します。 MNIST データセットには 60,000 のトレーニング画像と 10,000 のテスト画像が含まれており、各画像は 28x28 のグレースケール画像です。 TensorFlow ライブラリを使用してデータセットをロードして処理します。データセットをロードする前に、TensorFlow ライブラリと NumPy ライブラリをインストールする必要があります。
import tensorflow as tf
import numpy as np
(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.mnist.load_data()
データセットの前処理
train_images = train_images.reshape(train_images.shape[0], 28, 28, 1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # 正規化ピクセル値を [-1, 1] の範囲に設定します。
- GAN アーキテクチャの設計とトレーニング
私たちの GAN には、ジェネレーター ネットワークと弁別ネットワーク。生成ネットワークはノイズ ベクトルを入力として受け取り、28x28 の画像を出力します。弁別ネットワークは 28x28 画像を入力として受け取り、その画像が実画像である確率を出力します。
ジェネレーター ネットワークとディスクリミネーター ネットワークの両方のアーキテクチャでは、畳み込みニューラル ネットワーク (CNN) が使用されます。ジェネレーター ネットワークでは、デコンボリューション レイヤーを使用して、ノイズ ベクトルを 28x28 の画像にデコードします。弁別ネットワークでは、畳み込み層を使用して入力画像を分類します。
ジェネレーター ネットワークへの入力は、長さ 100 のノイズ ベクトルです。 tf.keras.Sequential 関数を使用してネットワーク層をスタックします。
def make_generator_model():
model = tf.keras.Sequential() model.add(tf.keras.layers.Dense(7*7*256, use_bias=False, input_shape=(100,))) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Reshape((7, 7, 256))) assert model.output_shape == (None, 7, 7, 256) # 注意:batch size没有限制 model.add(tf.keras.layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False)) assert model.output_shape == (None, 7, 7, 128) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False)) assert model.output_shape == (None, 14, 14, 64) model.add(tf.keras.layers.BatchNormalization()) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Conv2DTranspose(1, (5, 5), strides=(2, 2), padding='same', use_bias=False, activation='tanh')) assert model.output_shape == (None, 28, 28, 1) return model
識別ネットワークの入力は 28x28 の画像です。 tf.keras.Sequential 関数を使用してネットワーク層をスタックします。
def make_discriminator_model():
model = tf.keras.Sequential() model.add(tf.keras.layers.Conv2D(64, (5, 5), strides=(2, 2), padding='same', input_shape=[28, 28, 1])) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same')) model.add(tf.keras.layers.LeakyReLU()) model.add(tf.keras.layers.Dropout(0.3)) model.add(tf.keras.layers.Flatten()) model.add(tf.keras.layers.Dense(1)) return model
次に、トレーニング コードを記述します。各バッチでジェネレーター ネットワークとディスクリミネーター ネットワークを交互にトレーニングします。トレーニング プロセス中に、 tf.GradientTape() 関数を使用して勾配を記録し、その後 tf.keras.optimizers.Adam() 関数を使用してネットワークを最適化します。
generator = make_generator_model()
discriminator = make_discriminator_model()
損失関数
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
弁別器損失関数
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output) fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output) total_loss = real_loss + fake_loss return total_loss
ジェネレータ損失関数
defgenerator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
オプティマイザー
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
トレーニング関数の定義
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, 100]) with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape: generated_images = generator(noise, training=True) real_output = discriminator(images, training=True) fake_output = discriminator(generated_images, training=True) gen_loss = generator_loss(fake_output) disc_loss = discriminator_loss(real_output, fake_output) gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables) gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables) generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables)) discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
BATCH_SIZE = 256
EPOCHS = 100
範囲内のエポック(EPOCHS):
for i in range(train_images.shape[0] // BATCH_SIZE): batch_images = train_images[i*BATCH_SIZE:(i+1)*BATCH_SIZE] train_step(batch_images)
- 新しい画像の生成
# 注意 training` 设定为 False # 因此,所有层都在推理模式下运行(batchnorm)。 predictions = model(test_input, training=False) fig = plt.figure(figsize=(4, 4)) for i in range(predictions.shape[0]): plt.subplot(4, 4, i+1) plt.imshow(predictions[i, :, :, 0] * 127.5 + 127.5, cmap='gray') plt.axis('off') plt.savefig('image_at_epoch_{:04d}.png'.format(epoch)) plt.show()ランダムにノイズ ベクトルを生成noise = tf.random .normal([16, 100])
generate_and_save_images(generator, 0, Noise)
以上がPython での GAN アルゴリズムの例の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于Seaborn的相关问题,包括了数据可视化处理的散点图、折线图、条形图等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于进程池与进程锁的相关问题,包括进程池的创建模块,进程池函数等等内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于简历筛选的相关问题,包括了定义 ReadDoc 类用以读取 word 文件以及定义 search_word 函数用以筛选的相关内容,下面一起来看一下,希望对大家有帮助。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于数据类型之字符串、数字的相关问题,下面一起来看一下,希望对大家有帮助。

VS Code的确是一款非常热门、有强大用户基础的一款开发工具。本文给大家介绍一下10款高效、好用的插件,能够让原本单薄的VS Code如虎添翼,开发效率顿时提升到一个新的阶段。

本篇文章给大家带来了关于Python的相关知识,其中主要介绍了关于numpy模块的相关问题,Numpy是Numerical Python extensions的缩写,字面意思是Python数值计算扩展,下面一起来看一下,希望对大家有帮助。

pythn的中文意思是巨蟒、蟒蛇。1989年圣诞节期间,Guido van Rossum在家闲的没事干,为了跟朋友庆祝圣诞节,决定发明一种全新的脚本语言。他很喜欢一个肥皂剧叫Monty Python,所以便把这门语言叫做python。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

Safe Exam Browser
Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

ホットトピック



