Neural Radiation Fields (NeRF) は、新しいビュー合成方法として人気があります。 NeRF は、より広範囲のアプリケーションやデータセットに急速に一般化していますが、NeRF モデリング シナリオを直接編集することは依然として大きな課題です。重要なタスクは、3D シーンから不要なオブジェクトを削除し、周囲のシーンとの一貫性を維持することです。このタスクは 3D イメージの修復と呼ばれます。 3D では、ソリューションは複数のビューにわたって一貫しており、幾何学的に有効である必要があります。
この記事では、サムスン、トロント大学、その他の機関の研究者が、単一の入力におけるポーズ画像の少数セットと疎性を考慮して、これらの課題を解決するための新しい 3D 修復手法を提案します。画像に注意してください。提案されたモデル フレームワークは、最初にターゲット オブジェクトの 3 次元セグメンテーション マスクを迅速に取得してそのマスクを使用し、次に学習された 2 次元画像を使用してその情報を修復および抽出する知覚最適化に基づく方法を導入します。ビューの一貫性を確保しながら、3 次元空間に変換します。
この研究は、困難な現実のシーン データセットでトレーニングすることにより、3D シーン内修復手法を評価するための新しいベンチマークももたらします。特に、このデータセットには、ターゲット オブジェクトがある場合とない場合の同じシーンのビューが含まれており、3D 空間での修復タスクのより原則的なベンチマークが可能になります。
- #論文アドレス: https://arxiv.org/pdf/2211.12254.pdf
- Paper ホームページ: https://spinnerf3d.github.io/
以下この効果は、いくつかのオブジェクトを削除した後でも、周囲のシーンとの一貫性を維持できることを示しています。
この記事の方法と他の方法の比較メソッド、その他のメソッド 明らかな成果物がありますが、この記事のメソッドはそれほど明白ではありません:
著者は、統合された方法を使用しています。3D シーン編集タスクにおけるさまざまな課題に対処するために、この方法では、シーンのマルチビュー画像を取得し、ユーザー入力を使用して 3D マスクを抽出し、NeRF トレーニングを使用してそれをマスク画像に適合させます。ターゲットオブジェクトは合理的に立体的に見え、幾何学的形状が置き換えられます。既存のインタラクティブな 2D セグメンテーション手法では 3D の側面が考慮されておらず、現在の NeRF ベースの手法ではスパース アノテーションを使用して良好な結果を得ることができず、十分な精度が得られません。現在の NeRF ベースのアルゴリズムの中には、オブジェクトの削除を許可するものもありますが、新たに生成された空間部分を提供しようとするものではありません。現在の研究の進歩によると、この研究は、単一のフレームワークでインタラクティブなマルチビュー セグメンテーションと完全な 3D 画像復元を同時に処理する最初の作品です。
研究者は、セグメンテーションと画像復元に既製の 3D フリー モデルを利用し、一貫したビューで出力を 3D 空間に転送します。 2D インタラクティブ セグメンテーションの研究に基づいて構築された提案されたモデルは、ターゲット オブジェクト上でマウスを使用してユーザーが調整した少数の画像ポイントから開始します。これに基づいて、彼らのアルゴリズムはビデオベースのモデルでマスクを初期化し、セマンティック マスクの NeRF を当てはめることによって一貫した 3D セグメンテーションにトレーニングします。次に、事前トレーニングされた 2D 画像復元がマルチビュー画像セットに適用され、NeRF フィッティング プロセスを使用して 3D 画像シーンが再構成され、知覚損失を使用して 2D 画像の不一致を制限し、正規化された画像のジオメトリが制限されます。深度画像領域のマスク。全体として、以下の図に示すように、オブジェクトの選択から埋め込みシーンの新しいビューの合成まで、ユーザーの負担を最小限に抑えた統合フレームワークで完全なアプローチを提供します。
要約すると、この研究の貢献は次のとおりです。
- ユーザー インタラクション オブジェクトの選択から始まり、3D 修復された NeRF シーンで終わる完全な 3D シーン操作プロセス;
- 2 次元セグメンテーションモデルマルチビュー状況に拡張され、まばらな注釈から 3D 一貫性のあるマスクを復元できます。
- は、2D 画像修復を使用した、新しい最適化ベースの 3D 修復式であるビューの一貫性と知覚的妥当性を保証します。
- 対応する操作後の Groud Truth を含む、3D 編集タスク評価用の新しいデータ セット。
メソッドに特有の、この研究ではまず、単一ビューの注釈から大まかな 3D マスクを初期化する方法について説明します。注釈付きのソース コード ビューを I_1 として示します。オブジェクトとソース ビューに関するまばらな情報を対話型セグメンテーション モデルにフィードします。このモデルは、初期ソース オブジェクト マスク を推定するために使用されます。次に、トレーニング ビューはビデオ シーケンスとして扱われ、
を計算するためのビデオ インスタンス セグメンテーション モデル V が与えられ、
# が計算されます。ここで、
は、I_i のオブジェクト マスクの初期推定値です。トレーニング ビューは実際には隣接するビデオ フレームではなく、ビデオ セグメンテーション モデルは 3D で未知であることが多いため、初期マスクは境界付近で不正確になることがよくあります。
マルチビュー セグメンテーション モジュールは、入力 RGB 画像、対応するカメラの固有パラメータと外部パラメータ、および初期パラメータを取得します。セマンティック NeRF をトレーニングするためのマスク。上の図は、セマンティック NeRF で使用されるネットワークを示しています。点 x とビュー ディレクトリ d に対して、密度 σ と色 c に加えて、プレシグモイド オブジェクト ロジット s (x) を返します。高速収束を実現するために、研究者らはインスタント NGP を NeRF アーキテクチャとして使用しました。光線 r に関連する望ましい客観性は、密度に対する色ではなく、r 上の点の対数を方程式で表すことによって得られます。
##分類損失は監視に使用されます。## は、以下に基づいて監視に使用されます。 NeRF のマルチビュー セグメンテーション モデルの全体的な損失は次のとおりです。
##最後に、最適化に 2 つの段階が使用され、さらに改善されます。マスク コード; 初期 3D マスクを取得した後、マスクはトレーニング ビューからレンダリングされ、(ビデオ セグメンテーション出力の代わりに) 初期仮説として 2 次マルチビュー セグメンテーション モデルを監視するために使用されます。
#この研究は、ビューの一貫性を備えた修復方法を提案し、入力は RGB です。まず、イメージとマスクのペアをイメージ インペインターに転送して、RGB イメージを取得します。各ビューは独立して修復されるため、修復されたビューは NeRF 再構築を監視するために直接使用されます。この論文では、マスクを生成するための損失として平均二乗誤差 (MSE) を使用する代わりに、研究者らは知覚損失 LPIPS を使用して画像のマスクされた部分を最適化し、同時に MSE を使用してマスクされていない部分を最適化することを提案しています。この損失は次のように計算されます。
知覚的な損失があっても、ビュー間の違いを修復すると、誤った結果が得られます。低品質のジオメトリに収束します (たとえば、各ビューからの異なる情報を考慮して、「ぼやけた」ジオメトリ測定値がカメラの近くに形成される場合があります)。したがって、研究者らは生成された深度マップを NeRF モデルの追加のガイダンスとして使用し、知覚損失を計算するときに重みを分離し、知覚損失を使用してシーンの色のみを適合させました。これを行うために、不要なオブジェクトを含む画像に最適化された NeRF を使用し、トレーニング ビューに対応する深度マップをレンダリングしました。計算方法は、点の色の代わりにカメラまでの距離を使用することです。
# 次に、レンダリングされた深度はインペインター モデルに入力され、インペイントされた深度マップが取得されます。研究の結果、RGB などの深度レンダリングに LaMa を使用すると、十分に高品質な結果が得られることがわかりました。この NeRF は、マルチビュー セグメンテーションに使用されるのと同じモデルにすることができます。人間の注釈が付けられたマスクなど、他のソースがマスクの取得に使用される場合、新しい NeRF がシーンにインストールされます。これらの深度マップは、ペイントされた NeRF のジオメトリを監視するために使用され、レンダリングされた深度がインペインター モデルに供給されて、ペイントされた深度マップが取得されます。研究の結果、RGB などの深度レンダリングに LaMa を使用すると、十分に高品質な結果が得られることがわかりました。この NeRF は、マルチビュー セグメンテーションに使用されるのと同じモデルにすることができます。人間の注釈が付けられたマスクなど、他のソースがマスクの取得に使用される場合、新しい NeRF がシーンにインストールされます。次に、これらの深度マップを使用して、インペイントされた深さまでのレンダリング深度によって、インペイントされた深さまで ## の距離だけインペイントされた NeRF のジオメトリを監視します。
#実験結果
定性的に言えば、以下の図は、研究者のセグメンテーション モデルの結果と、NVOS およびいくつかのビデオ セグメンテーション手法の出力を比較しています。比較する。彼らのモデルは、3D ビデオ セグメンテーション モデルの厚いエッジと比較して、ノイズを低減し、ビューの一貫性を向上させます。 NVOS は研究者の新しいモデルで使用されているスパース ポイントの代わりに落書きを使用していますが、新しいモデルの MVSeg は視覚的に NVOS よりも優れています。 NVOS コードベースは利用できないため、研究者は NVOS 上で公開されている定性的結果を再現しました (その他の例については補足文書を参照してください)。
#
次の表は、MV 手法とベースラインとの比較を示しており、全体として、新しく提案された手法は他の 2D および 3D 修復手法よりも大幅に優れています。以下の表は、幾何学的構造からガイダンスを削除すると、修復されたシーンの品質が低下することをさらに示しています。
#定性的な結果を図 6 と図 7 に示します。図 6 は、私たちの方法が、光沢のある表面とマットな表面の一貫したビューを含む、詳細なテクスチャを持つビュー一貫性のあるシーンを再構築できることを示しています。図 7 は、私たちの知覚的手法がマスク領域の正確な再構成制約を軽減し、それによってすべての画像を使用する際のぼやけの出現を防ぎ、同時に単一ビュー監視によって引き起こされるアーティファクトを回避することを示しています。
以上がNeRF の新しい研究結果がここにあります: 3D シーンは髪まで正確に、物体なしで跡形もなく削除されますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

HiddenLayerの画期的な研究は、主要な大規模な言語モデル(LLMS)における重大な脆弱性を明らかにしています。 彼らの発見は、ほぼすべての主要なLLMSを回避できる「政策の人形劇」と呼ばれる普遍的なバイパス技術を明らかにしています

環境責任と廃棄物の削減の推進は、企業の運営方法を根本的に変えています。 この変革は、製品開発、製造プロセス、顧客関係、パートナーの選択、および新しいものの採用に影響します

高度なAIハードウェアに関する最近の制限は、AI優位のためのエスカレートする地政学的競争を強調し、中国の外国半導体技術への依存を明らかにしています。 2024年、中国は3,850億ドル相当の半導体を大量に輸入しました

GoogleからのChromeの強制的な売却の可能性は、ハイテク業界での激しい議論に火をつけました。 Openaiが65%の世界市場シェアを誇る大手ブラウザを取得する見込みは、THの将来について重要な疑問を提起します

全体的な広告の成長を上回っているにもかかわらず、小売メディアの成長は減速しています。 この成熟段階は、生態系の断片化、コストの上昇、測定の問題、統合の複雑さなど、課題を提示します。 ただし、人工知能

古いラジオは、ちらつきと不活性なスクリーンのコレクションの中で静的なパチパチと鳴ります。簡単に不安定になっているこの不安定な電子機器の山は、没入型展示会の6つのインスタレーションの1つである「e-waste land」の核心を形成しています。

Google Cloudの次の2025年:インフラストラクチャ、接続性、およびAIに焦点を当てています Google Cloudの次の2025年の会議では、多くの進歩を紹介しました。 特定の発表の詳細な分析については、私の記事を参照してください

今週はAIとXR:AIを搭載した創造性の波が、音楽の世代から映画制作まで、メディアとエンターテイメントを席巻しています。 見出しに飛び込みましょう。 AIに生成されたコンテンツの影響力の高まり:テクノロジーコンサルタントのShelly Palme


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

PhpStorm Mac バージョン
最新(2018.2.1)のプロフェッショナル向けPHP統合開発ツール

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

WebStorm Mac版
便利なJavaScript開発ツール

SecLists
SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

ホットトピック









