springboot redis mybatis plus を統合する小さなデモ
pom ファイル
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.wlient</groupId> <artifactId>springboot_mq_redis</artifactId> <version>0.0.1-SNAPSHOT</version> <name>springboot_mq_redis</name> <description>Demo project for Spring Boot</description> <properties> <java.version>1.8</java.version> <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding> <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding> <spring-boot.version>2.3.7.RELEASE</spring-boot.version> </properties> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>3.4.2</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-devtools</artifactId> <scope>runtime</scope> <optional>true</optional> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <scope>runtime</scope> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> <optional>true</optional> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> <exclusions> <exclusion> <groupId>org.junit.vintage</groupId> <artifactId>junit-vintage-engine</artifactId> </exclusion> </exclusions> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.springframework.amqp</groupId> <artifactId>spring-rabbit-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>org.aspectj</groupId> <artifactId>aspectjweaver</artifactId> <version>1.9.6</version> </dependency> <!--jedis--> <dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>3.2.0</version> </dependency> <!-- swagger --> <dependency> <groupId>com.github.xiaoymin</groupId> <artifactId>knife4j-spring-boot-starter</artifactId> <version>2.0.7</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.76</version> </dependency> </dependencies> <dependencyManagement> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-dependencies</artifactId> <version>${spring-boot.version}</version> <type>pom</type> <scope>import</scope> </dependency> </dependencies> </dependencyManagement> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-compiler-plugin</artifactId> <version>3.8.1</version> <configuration> <source>1.8</source> <target>1.8</target> <encoding>UTF-8</encoding> </configuration> </plugin> <plugin> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-maven-plugin</artifactId> <version>2.3.7.RELEASE</version> <configuration> <mainClass>com.wlient.springboot_mq_redis.SpringbootMqRedisApplication</mainClass> </configuration> <executions> <execution> <id>repackage</id> <goals> <goal>repackage</goal> </goals> </execution> </executions> </plugin> </plugins> </build> </project>
yaml ファイル
spring: redis: host: 1.117.89.11 port: 6378 password: Terry123456. timeout: 60s database: 2 lettuce: pool: # 连接池中的最小空闲连接 min-idle: 0 # 连接池中的最大空闲连接 max-idle: 8 # 连接池的最大数据库连接数 max-active: 8 # #连接池最大阻塞等待时间(使用负值表示没有限制) max-wait: -1ms #spring cache 配置 cache: type: redis redis: # key过期时间 半小时 time-to-live: 1800000 #毫秒
CacheConfig
@Configuration public class CacheConfig { @Bean CacheManager cacheManager(RedisConnectionFactory connectionFactory) { RedisCacheConfiguration defaultCacheConfig = RedisCacheConfiguration.defaultCacheConfig(); //common信息缓存配置 RedisCacheConfiguration userCacheConfiguration = defaultCacheConfig // 设置 key为string序列化 .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(new StringRedisSerializer())) // 设置value为json序列化 .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(new GenericJackson2JsonRedisSerializer())).disableCachingNullValues(); Map<String, RedisCacheConfiguration> redisCacheConfigurationMap = new HashMap<>(); //entryTtl设置缓存失效时间,单位是秒 redisCacheConfigurationMap.put("common", userCacheConfiguration.entryTtl(Duration.ofSeconds(30))); //设置CacheManager的值序列化方式为JdkSerializationRedisSerializer,但其实RedisCacheConfiguration默认就是使用StringRedisSerializer序列化key,JdkSerializationRedisSerializer序列化value,所以以下注释代码为默认实现 //ClassLoader loader = this.getClass().getClassLoader(); //JdkSerializationRedisSerializer jdkSerializer = new JdkSerializationRedisSerializer(loader); //RedisSerializationContext.SerializationPair<Object> pair = RedisSerializationContext.SerializationPair.fromSerializer(jdkSerializer); //RedisCacheConfiguration defaultCacheConfig=RedisCacheConfiguration.defaultCacheConfig().serializeValuesWith(pair); Set<String> cacheNames = new HashSet<>(); cacheNames.add("common"); //初始化RedisCacheManager RedisCacheManager cacheManager = RedisCacheManager.builder(connectionFactory).cacheDefaults(defaultCacheConfig).initialCacheNames(cacheNames).withInitialCacheConfigurations(redisCacheConfigurationMap).build(); return cacheManager; } }
RedisConfig
package com.wlient.springboot_mq_redis.Configuar; import com.fasterxml.jackson.annotation.JsonAutoDetect; import com.fasterxml.jackson.annotation.PropertyAccessor; import com.fasterxml.jackson.databind.ObjectMapper; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.connection.RedisConnectionFactory; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer; import org.springframework.data.redis.serializer.StringRedisSerializer; @Configuration public class RedisConfig { @Bean @SuppressWarnings("all") public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) { RedisTemplate<String, Object> template = new RedisTemplate<String, Object>(); template.setConnectionFactory(factory); Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class); ObjectMapper om = new ObjectMapper(); om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY); om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL); jackson2JsonRedisSerializer.setObjectMapper(om); StringRedisSerializer stringRedisSerializer = new StringRedisSerializer(); // key采用String的序列化方式 template.setKeySerializer(stringRedisSerializer); // hash的key也采用String的序列化方式 template.setHashKeySerializer(stringRedisSerializer); // value序列化方式采用jackson template.setValueSerializer(jackson2JsonRedisSerializer); // hash的value序列化方式采用jackson template.setHashValueSerializer(jackson2JsonRedisSerializer); template.afterPropertiesSet(); return template; } }
SpringCacheConfig
package com.wlient.springboot_mq_redis.Configuar; import org.springframework.boot.autoconfigure.cache.CacheProperties; import org.springframework.boot.context.properties.EnableConfigurationProperties; import org.springframework.cache.annotation.EnableCaching; import org.springframework.context.annotation.Bean; import org.springframework.context.annotation.Configuration; import org.springframework.data.redis.cache.RedisCacheConfiguration; import org.springframework.data.redis.serializer.RedisSerializationContext; import org.springframework.data.redis.serializer.RedisSerializer; /** * spring cache 配置 */ @EnableConfigurationProperties(CacheProperties.class) @Configuration @EnableCaching public class SpringCacheConfig { @Bean public RedisCacheConfiguration redisCacheConfiguration(CacheProperties cacheProperties) { RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig() .serializeKeysWith(RedisSerializationContext.SerializationPair.fromSerializer(RedisSerializer.string())) .serializeValuesWith(RedisSerializationContext.SerializationPair.fromSerializer(RedisSerializer.json())); CacheProperties.Redis redisProperties = cacheProperties.getRedis(); //将配置文件中所有的配置都生效 if (redisProperties.getTimeToLive() != null) { config = config.entryTtl(redisProperties.getTimeToLive()); } if (redisProperties.getKeyPrefix() != null) { config = config.prefixKeysWith(redisProperties.getKeyPrefix()); } if (!redisProperties.isCacheNullValues()) { config = config.disableCachingNullValues(); } if (!redisProperties.isUseKeyPrefix()) { config = config.disableKeyPrefix(); } return config; } }
RedisService
package com.wlient.springboot_mq_redis.service; import org.springframework.beans.factory.annotation.Autowired; import org.springframework.data.redis.core.RedisTemplate; import org.springframework.stereotype.Service; import org.springframework.util.CollectionUtils; import javax.annotation.Resource; import java.util.Collection; import java.util.List; import java.util.Map; import java.util.Set; import java.util.concurrent.TimeUnit; @Service public class RedisService { @Resource private RedisTemplate<String, Object> redisTemplate; // =============================common============================ /** * 指定缓存失效时间 * @param key 键 * @param time 时间(秒) * @return */ public boolean expire(String key, long time) { try { if (time > 0) { redisTemplate.expire(key, time, TimeUnit.SECONDS); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 根据key 获取过期时间 * @param key 键 不能为null * @return 时间(秒) 返回0代表为永久有效 */ public long getExpire(String key) { return redisTemplate.getExpire(key, TimeUnit.SECONDS); } /** * 判断key是否存在 * @param key 键 * @return true 存在 false不存在 */ public boolean hasKey(String key) { try { return redisTemplate.hasKey(key); } catch (Exception e) { e.printStackTrace(); return false; } } /** * 删除缓存 * @param key 可以传一个值 或多个 */ @SuppressWarnings("unchecked") public void del(String... key) { if (key != null && key.length > 0) { if (key.length == 1) { redisTemplate.delete(key[0]); } else { redisTemplate.delete(CollectionUtils.arrayToList(key)); } } } // ============================String============================= /** * 普通缓存获取 * @param key 键 * @return 值 */ public Object get(String key) { return key == null ? null : redisTemplate.opsForValue().get(key); } /** * 普通缓存放入 * @param key 键 * @param value 值 * @return true成功 false失败 */ public boolean set(String key, Object value) { try { redisTemplate.opsForValue().set(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 普通缓存放入并设置时间 * @param key 键 * @param value 值 * @param time 时间(秒) time要大于0 如果time小于等于0 将设置无限期 * @return true成功 false 失败 */ public boolean set(String key, Object value, long time) { try { if (time > 0) { redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS); } else { set(key, value); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 递增 * @param key 键 * @param delta 要增加几(大于0) * @return */ public long incr(String key, long delta) { if (delta < 0) { throw new RuntimeException("递增因子必须大于0"); } return redisTemplate.opsForValue().increment(key, delta); } /** * 递减 * @param key 键 * @param delta 要减少几(小于0) * @return */ public long decr(String key, long delta) { if (delta < 0) { throw new RuntimeException("递减因子必须大于0"); } return redisTemplate.opsForValue().increment(key, -delta); } // ================================Map================================= /** * HashGet * @param key 键 不能为null * @param item 项 不能为null * @return 值 */ public Object hget(String key, String item) { return redisTemplate.opsForHash().get(key, item); } /** * 获取hashKey对应的所有键值 * @param key 键 * @return 对应的多个键值 */ public Map<Object, Object> hmget(String key) { return redisTemplate.opsForHash().entries(key); } /** * HashSet * @param key 键 * @param map 对应多个键值 * @return true 成功 false 失败 */ public boolean hmset(String key, Map<String, Object> map) { try { redisTemplate.opsForHash().putAll(key, map); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * HashSet 并设置时间 * @param key 键 * @param map 对应多个键值 * @param time 时间(秒) * @return true成功 false失败 */ public boolean hmset(String key, Map<String, Object> map, long time) { try { redisTemplate.opsForHash().putAll(key, map); if (time > 0) { expire(key, time); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 向一张hash表中放入数据,如果不存在将创建 * @param key 键 * @param item 项 * @param value 值 * @return true 成功 false失败 */ public boolean hset(String key, String item, Object value) { try { redisTemplate.opsForHash().put(key, item, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 向一张hash表中放入数据,如果不存在将创建 * @param key 键 * @param item 项 * @param value 值 * @param time 时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间 * @return true 成功 false失败 */ public boolean hset(String key, String item, Object value, long time) { try { redisTemplate.opsForHash().put(key, item, value); if (time > 0) { expire(key, time); } return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 删除hash表中的值 * @param key 键 不能为null * @param item 项 可以使多个 不能为null */ public void hdel(String key, Object... item) { redisTemplate.opsForHash().delete(key, item); } /** * 删除hash表中的值 * @param key 键 不能为null * @param items 项 可以使多个 不能为null */ public void hdel(String key, Collection items) { redisTemplate.opsForHash().delete(key, items.toArray()); } /** * 判断hash表中是否有该项的值 * @param key 键 不能为null * @param item 项 不能为null * @return true 存在 false不存在 */ public boolean hHasKey(String key, String item) { return redisTemplate.opsForHash().hasKey(key, item); } /** * hash递增 如果不存在,就会创建一个 并把新增后的值返回 * @param key 键 * @param item 项 * @param delta 要增加几(大于0) * @return */ public double hincr(String key, String item, double delta) { if (delta < 0) { throw new RuntimeException("递增因子必须大于0"); } return redisTemplate.opsForHash().increment(key, item, delta); } /** * hash递减 * @param key 键 * @param item 项 * @param delta 要减少记(小于0) * @return */ public double hdecr(String key, String item, double delta) { if (delta < 0) { throw new RuntimeException("递减因子必须大于0"); } return redisTemplate.opsForHash().increment(key, item, -delta); } // ============================set============================= /** * 根据key获取Set中的所有值 * @param key 键 * @return */ public Set<Object> sGet(String key) { try { return redisTemplate.opsForSet().members(key); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 根据value从一个set中查询,是否存在 * @param key 键 * @param value 值 * @return true 存在 false不存在 */ public boolean sHasKey(String key, Object value) { try { return redisTemplate.opsForSet().isMember(key, value); } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将数据放入set缓存 * @param key 键 * @param values 值 可以是多个 * @return 成功个数 */ public long sSet(String key, Object... values) { try { return redisTemplate.opsForSet().add(key, values); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 将数据放入set缓存 * @param key 键 * @param values 值 可以是多个 * @return 成功个数 */ public long sSet(String key, Collection values) { try { return redisTemplate.opsForSet().add(key, values.toArray()); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 将set数据放入缓存 * @param key 键 * @param time 时间(秒) * @param values 值 可以是多个 * @return 成功个数 */ public long sSetAndTime(String key, long time, Object... values) { try { Long count = redisTemplate.opsForSet().add(key, values); if (time > 0) expire(key, time); return count; } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 获取set缓存的长度 * @param key 键 * @return */ public long sGetSetSize(String key) { try { return redisTemplate.opsForSet().size(key); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 移除值为value的 * @param key 键 * @param values 值 可以是多个 * @return 移除的个数 */ public long setRemove(String key, Object... values) { try { Long count = redisTemplate.opsForSet().remove(key, values); return count; } catch (Exception e) { e.printStackTrace(); return 0; } } // ===============================list================================= /** * 获取list缓存的内容 * @param key 键 * @param start 开始 * @param end 结束 0 到 -1代表所有值 * @return */ public List<Object> lGet(String key, long start, long end) { try { return redisTemplate.opsForList().range(key, start, end); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 获取list缓存的长度 * @param key 键 * @return */ public long lGetListSize(String key) { try { return redisTemplate.opsForList().size(key); } catch (Exception e) { e.printStackTrace(); return 0; } } /** * 通过索引 获取list中的值 * @param key 键 * @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推 * @return */ public Object lGetIndex(String key, long index) { try { return redisTemplate.opsForList().index(key, index); } catch (Exception e) { e.printStackTrace(); return null; } } /** * 将list放入缓存 * @param key 键 * @param value 值 * @return */ public boolean lSet(String key, Object value) { try { redisTemplate.opsForList().rightPush(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将list放入缓存 * @param key 键 * @param value 值 * @param time 时间(秒) * @return */ public boolean lSet(String key, Object value, long time) { try { redisTemplate.opsForList().rightPush(key, value); if (time > 0) expire(key, time); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将list放入缓存 * @param key 键 * @param value 值 * @return */ public boolean lSet(String key, List<Object> value) { try { redisTemplate.opsForList().rightPushAll(key, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 将list放入缓存 * * @param key 键 * @param value 值 * @param time 时间(秒) * @return */ public boolean lSet(String key, List<Object> value, long time) { try { redisTemplate.opsForList().rightPushAll(key, value); if (time > 0) expire(key, time); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 根据索引修改list中的某条数据 * @param key 键 * @param index 索引 * @param value 值 * @return */ public boolean lUpdateIndex(String key, long index, Object value) { try { redisTemplate.opsForList().set(key, index, value); return true; } catch (Exception e) { e.printStackTrace(); return false; } } /** * 移除N个值为value * @param key 键 * @param count 移除多少个 * @param value 值 * @return 移除的个数 */ public long lRemove(String key, long count, Object value) { try { Long remove = redisTemplate.opsForList().remove(key, count, value); return remove; } catch (Exception e) { e.printStackTrace(); return 0; } } }
Application
@SpringBootApplication @MapperScan("com.wlient.springboot_mq_redis.dao") @EnableCaching public class SpringbootMqRedisApplication { public static void main(String[] args) { SpringApplication.run(SpringbootMqRedisApplication.class, args); } }
主に @EnableCaching アノテーションを追加してキャッシュを有効にします
キャッシュには 2 つの方法があります:
方法 1: RedisTemplate をカプセル化する RedisService を直接使用してキャッシュ操作を実行する
コントローラー層
@Autowired RedisService redisService; @GetMapping("selectOne2") public ServiceResult<User> selectOne2(Integer id) { User user = (User) redisService.get("selectOne2::"+id); if (user == null){ user = userService.queryById2(id); redisService.set("selectOne2::"+id,user); } System.out.println(user); return ServiceResult.ok(user); }
方法 2: アノテーションを使用する
サービス層で操作
@Service("userService") @CacheConfig(cacheNames = "departmentsService") public class UserServiceImpl implements UserService { @Resource private UserDao userDao; /** * 通过ID查询单条数据 * * @param id 主键 * @return 实例对象 */ @Override @Cacheable(key = "#root.methodName+':'+#id") public User queryById(Integer id) { User user = this.userDao.selectById(id); return user; } }
Use比較するための注釈 便利ですが、柔軟性が十分ではありません。
カプセル化クラスを使用するとコードの量は増加しますが、ほとんどのニーズを満たすことができます
設定ファイルの詳細な説明
RedisConfig: Redis キャッシュ、設定キー、値のシリアル化メソッドなど。
SpringCacheConfig : Spring Cache Configuration
これらの 2 つのファイルは必須です SpringCacheConfig 設定ファイルが欠落している場合、redis に格納されたデータが文字化けします
CacheConfig: 必要に応じて採用される設定のみ (プロジェクトからコピー) は必要ありません
以上がSpringBoot が Redis を統合してキャッシュ メカニズムを有効にする方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Redisのデータモデルと構造には、5つの主要なタイプが含まれます。1。文字列:テキストまたはバイナリデータの保存に使用され、原子操作をサポートします。 2。リスト:キューとスタックに適した注文された要素コレクション。 3.セット:順序付けられていない一意の要素セット、セット操作をサポートします。 4。注文セット(sortedset):ランキングに適したスコアを持つ一意の要素セット。 5。ハッシュテーブル(ハッシュ):オブジェクトの保存に適したキー価値ペアのコレクション。

Redisのデータベースメソッドには、メモリ内データベースとキー価値ストレージが含まれます。 1)Redisはデータをメモリに保存し、速く読み取り、書き込みます。 2)キー価値のペアを使用してデータを保存し、キャッシュやNOSQLデータベースに適したリスト、コレクション、ハッシュテーブル、注文コレクションなどの複雑なデータ構造をサポートします。

Redisは、高速パフォーマンス、リッチデータ構造、高可用性とスケーラビリティ、持続性能力、幅広いエコシステムサポートを提供するため、強力なデータベースソリューションです。 1)非常に速いパフォーマンス:Redisのデータはメモリに保存され、非常に速い読み取り速度と書き込み速度が高く、高い並行性と低レイテンシアプリケーションに適しています。 2)豊富なデータ構造:さまざまなシナリオに適したリスト、コレクションなど、複数のデータ型をサポートします。 3)高可用性とスケーラビリティ:マスタースレーブの複製とクラスターモードをサポートして、高可用性と水平スケーラビリティを実現します。 4)持続性とデータセキュリティ:データの整合性と信頼性を確保するために、データの持続性がRDBとAOFを通じて達成されます。 5)幅広い生態系とコミュニティのサポート:巨大なエコシステムとアクティブなコミュニティにより、

Redisの主な機能には、速度、柔軟性、豊富なデータ構造のサポートが含まれます。 1)速度:Redisはメモリ内データベースであり、読み取り操作はほとんど瞬間的で、キャッシュとセッション管理に適しています。 2)柔軟性:複雑なデータ処理に適した文字列、リスト、コレクションなど、複数のデータ構造をサポートします。 3)データ構造のサポート:さまざまなビジネスニーズに適した文字列、リスト、コレクション、ハッシュテーブルなどを提供します。

Redisのコア関数は、高性能のメモリ内データストレージおよび処理システムです。 1)高速データアクセス:Redisはデータをメモリに保存し、マイクロ秒レベルの読み取り速度と書き込み速度を提供します。 2)豊富なデータ構造:文字列、リスト、コレクションなどをサポートし、さまざまなアプリケーションシナリオに適応します。 3)永続性:RDBとAOFを介してディスクにデータを持続します。 4)サブスクリプションを公開:メッセージキューまたはリアルタイム通信システムで使用できます。

Redisは、次のようなさまざまなデータ構造をサポートしています。1。文字列、単一価値データの保存に適しています。 2。キューやスタックに適したリスト。 3.非重複データの保存に使用されるセット。 4。ランキングリストと優先キューに適した注文セット。 5。オブジェクトまたは構造化されたデータの保存に適したハッシュテーブル。

Redisカウンターは、Redisキー価値ペアストレージを使用して、カウンターキーの作成、カウントの増加、カウントの減少、カウントのリセット、およびカウントの取得など、カウント操作を実装するメカニズムです。 Redisカウンターの利点には、高速速度、高い並行性、耐久性、シンプルさと使いやすさが含まれます。ユーザーアクセスカウント、リアルタイムメトリック追跡、ゲームのスコアとランキング、注文処理などのシナリオで使用できます。

Redisコマンドラインツール(Redis-Cli)を使用して、次の手順を使用してRedisを管理および操作します。サーバーに接続し、アドレスとポートを指定します。コマンド名とパラメーターを使用して、コマンドをサーバーに送信します。ヘルプコマンドを使用して、特定のコマンドのヘルプ情報を表示します。 QUITコマンドを使用して、コマンドラインツールを終了します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター

SublimeText3 中国語版
中国語版、とても使いやすい
