1.タスクノード
typedef void (*cb_fun)(void *); //任务结构体 typedef struct task { void *argv; //任务函数的参数(任务执行结束前,要保证参数地址有效) cb_fun handler; //任务函数(返回值必须为0 非0值用作增加线程,和销毁线程池) struct task *next; //任务链指针 }zoey_task_t;
Handlerは実際のタスク関数である関数ポインタ、argvは関数のパラメータ、nextは次のタスクを指します。
2. タスクキュー
typedef struct task_queue { zoey_task_t *head; //队列头 zoey_task_t **tail; //队列尾 unsigned int maxtasknum; //最大任务限制 unsigned int curtasknum; //当前任务数 }zoey_task_queue_t;
headはタスクキューの先頭ポインタ、tailはタスクキューの末尾ポインタ、maxtasknumはタスクの最大数です。 curtasknum はキュー内の現在のタスクです。
3. スレッドプール
typedef struct threadpool { pthread_mutex_t mutex; //互斥锁 pthread_cond_t cond; //条件锁 zoey_task_queue_t tasks;//任务队列 unsigned int threadnum; //线程数 unsigned int thread_stack_size; //线程堆栈大小 }zoey_threadpool_t;
mutexはミューテックスロック、condは条件付きロックです。 Mutex と cond は共同して、受信または追加するスレッド プール タスクの相互排他を保証します。
Tasks はタスク キューを指します。
Threadnum はスレッド プール内のスレッドの数です。
Thread_stack_size はスレッド スタックのサイズです。
4. 起動構成
//配置参数 typedef struct threadpool_conf { unsigned int threadnum; //线程数 unsigned int thread_stack_size;//线程堆栈大小 unsigned int maxtasknum;//最大任务限制 }zoey_threadpool_conf_t;
スタートアップ構成の構造体 本体は、スレッド プールを初期化するときのいくつかのパラメータです。
5. スレッド プールの初期化
最初にパラメータが正当であるかどうかを確認し、次に mutex、cond、key (pthread_key_t) を初期化します。このキーはスレッド グローバル変数の読み取りと書き込みに使用され、このグローバル変数はスレッドが終了するかどうかを制御します。
最後にスレッドを作成します。
zoey_threadpool_t* zoey_threadpool_init(zoey_threadpool_conf_t *conf) { zoey_threadpool_t *pool = null; int error_flag_mutex = 0; int error_flag_cond = 0; pthread_attr_t attr; do{ if (z_conf_check(conf) == -1){ //检查参数是否合法 break; } pool = (zoey_threadpool_t *)malloc(sizeof(zoey_threadpool_t));//申请线程池句柄 if (pool == null){ break; } //初始化线程池基本参数 pool->threadnum = conf->threadnum; pool->thread_stack_size = conf->thread_stack_size; pool->tasks.maxtasknum = conf->maxtasknum; pool->tasks.curtasknum = 0; z_task_queue_init(&pool->tasks); if (z_thread_key_create() != 0){//创建一个pthread_key_t,用以访问线程全局变量。 free(pool); break; } if (z_thread_mutex_create(&pool->mutex) != 0){ //初始化互斥锁 z_thread_key_destroy(); free(pool); break; } if (z_thread_cond_create(&pool->cond) != 0){ //初始化条件锁 z_thread_key_destroy(); z_thread_mutex_destroy(&pool->mutex); free(pool); break; } if (z_threadpool_create(pool) != 0){ //创建线程池 z_thread_key_destroy(); z_thread_mutex_destroy(&pool->mutex); z_thread_cond_destroy(&pool->cond); free(pool); break; } return pool; }while(0); return null; }
6. タスクの追加
まずタスク ノードを申請し、インスタンス化後にタスク キューにノードを追加し、現在のタスク キュー番号を追加して他のノードに通知します。新しいタスクのプロセス。タスク。プロセス全体がロックされています。
int zoey_threadpool_add_task(zoey_threadpool_t *pool, cb_fun handler, void* argv) { zoey_task_t *task = null; //申请一个任务节点并赋值 task = (zoey_task_t *)malloc(sizeof(zoey_task_t)); if (task == null){ return -1; } task->handler = handler; task->argv = argv; task->next = null; if (pthread_mutex_lock(&pool->mutex) != 0){ //加锁 free(task); return -1; } do{ if (pool->tasks.curtasknum >= pool->tasks.maxtasknum){//判断工作队列中的任务数是否达到限制 break; } //将任务节点尾插到任务队列 *(pool->tasks.tail) = task; pool->tasks.tail = &task->next; pool->tasks.curtasknum++; //通知阻塞的线程 if (pthread_cond_signal(&pool->cond) != 0){ break; } //解锁 pthread_mutex_unlock(&pool->mutex); return 0; }while(0); pthread_mutex_unlock(&pool->mutex); free(task); return -1; }
7. スレッド プールを破棄します
スレッド プールを破棄すると、実際にはタスク キューにタスクが追加されますが、追加されたタスクはスレッドを終了させることです。 z_threadpool_exit_cb 関数はロックを 0 に設定し、スレッドを終了します。ロック 0 は、このスレッド
が終了し、次のスレッドを終了することを意味します。スレッドを終了すると、すべてのリソースが解放されます。
void zoey_threadpool_destroy(zoey_threadpool_t *pool) { unsigned int n = 0; volatile unsigned int lock; //z_threadpool_exit_cb函数会使对应线程退出 for (; n < pool->threadnum; n++){ lock = 1; if (zoey_threadpool_add_task(pool, z_threadpool_exit_cb, &lock) != 0){ return; } while (lock){ usleep(1); } } z_thread_mutex_destroy(&pool->mutex); z_thread_cond_destroy(&pool->cond); z_thread_key_destroy(); free(pool); }
8. スレッドを追加します
これは非常に簡単で、スレッドとスレッドの数を生成するだけです。ロック。
int zoey_thread_add(zoey_threadpool_t *pool) { int ret = 0; if (pthread_mutex_lock(&pool->mutex) != 0){ return -1; } ret = z_thread_add(pool); pthread_mutex_unlock(&pool->mutex); return ret; }
9. タスクキューの最大タスク制限を変更します
num=0の場合、スレッド数を無限に設定します。
void zoey_set_max_tasknum(zoey_threadpool_t *pool,unsigned int num) { if (pthread_mutex_lock(&pool->mutex) != 0){ return -1; } z_change_maxtask_num(pool, num); //改变最大任务限制 pthread_mutex_unlock(&pool->mutex); }
10.使用例
int main() { int array[10000] = {0}; int i = 0; zoey_threadpool_conf_t conf = {5,0,5}; //实例化启动参数 zoey_threadpool_t *pool = zoey_threadpool_init(&conf);//初始化线程池 if (pool == null){ return 0; } for (; i < 10000; i++){ array[i] = i; if (i == 80){ zoey_thread_add(pool); //增加线程 zoey_thread_add(pool); } if (i == 100){ zoey_set_max_tasknum(pool, 0); //改变最大任务数 0为不做上限 } while(1){ if (zoey_threadpool_add_task(pool, testfun, &array[i]) == 0){ break; } printf("error in i = %d\n",i); } } zoey_threadpool_destroy(pool); while(1){ sleep(5); } return 0; }
以上がnginxスレッドプールのソースコードは何ですか?の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Nginxは、高い並行性と静的コンテンツの処理に適していますが、Apacheは動的な内容と複雑なURL書き換えに適しています。 1.Nginxは、高い並行性に適したイベント駆動型モデルを採用しています。 2。Apacheは、動的なコンテンツに適したプロセスモデルまたはスレッドモデルを使用します。 3。NGINX構成は簡単ですが、Apache構成は複雑ですが、より柔軟です。

NginxとApacheにはそれぞれ独自の利点があり、選択は特定のニーズに依存します。 1.NGINXは、単純な展開を備えた高い並行性に適しており、構成の例には仮想ホストとリバースプロキシが含まれます。 2。Apacheは複雑な構成に適しており、展開も同様に簡単です。構成の例には、仮想ホストとURL書き換えが含まれます。

Nginxunitの目的は、Webアプリケーションの展開と管理を簡素化することです。その利点には、次のものが含まれます。1)Python、PHP、Go、Java、node.jsなどの複数のプログラミング言語をサポートします。 2)動的構成と自動リロード関数を提供します。 3)統一されたAPIを介してアプリケーションライフサイクルを管理します。 4)非同期I/Oモデルを採用して、高い並行性と負荷分散をサポートします。

Nginxは2002年に開始され、C10Kの問題を解決するためにIgorsysoevによって開発されました。 1.Nginxは、高性能の非同期アーキテクチャであり、高い並行性に適した高性能Webサーバーです。 2。システムのパフォーマンスと信頼性を向上させるために、リバースプロキシ、ロードバランス、キャッシュなどの高度な機能を提供します。 3。最適化手法には、HTTP/2とセキュリティ構成を使用した、ワーカープロセスの数の調整、GZIP圧縮の有効化が含まれます。

NginxとApacheの主なアーキテクチャの違いは、Nginxがイベント駆動型の非同期非ブロッキングモデルを採用し、Apacheはプロセスまたはスレッドモデルを使用することです。 1)nginxは、静的な内容と逆プロキシに適したイベントループとI/O多重化メカニズムを介して、高電流接続を効率的に処理します。 2)Apacheは、非常に安定しているがリソース消費量が高いマルチプロセスまたはマルチスレッドモデルを採用しており、リッチモジュールの拡張が必要なシナリオに適しています。

Nginxは、高い同時コンテンツと静的コンテンツの処理に適していますが、Apacheは複雑な構成と動的コンテンツに適しています。 1。NGINXは、交通量の多いシナリオに適した同時接続を効率的に処理しますが、動的コンテンツを処理するときは追加の構成が必要です。 2。Apacheは、複雑なニーズに適したリッチモジュールと柔軟な構成を提供しますが、並行性のパフォーマンスが低いです。

NginxとApacheにはそれぞれ独自の利点と欠点があり、選択は特定のニーズに基づいている必要があります。 1.Nginxは、非同期の非ブロッキングアーキテクチャのため、高い並行性シナリオに適しています。 2。Apacheは、モジュラー設計のため、複雑な構成を必要とする低変動シナリオに適しています。

Nginxunitは、複数のプログラミング言語をサポートし、動的構成、ゼロダウンタイム更新、組み込みのロードバランシングなどの機能を提供するオープンソースアプリケーションサーバーです。 1。動的構成:再起動せずに構成を変更できます。 2。多言語サポート:Python、Go、Java、PHPなどと互換性があります。 4。ビルトインロードバランシング:リクエストは、複数のアプリケーションインスタンスに配布できます。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SublimeText3 中国語版
中国語版、とても使いやすい

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ドリームウィーバー CS6
ビジュアル Web 開発ツール

Dreamweaver Mac版
ビジュアル Web 開発ツール

SublimeText3 Linux 新バージョン
SublimeText3 Linux 最新バージョン

ホットトピック









