検索
ホームページデータベースRedisRedis BloomFilter ブルームフィルターの実装方法

    ブルーム フィルターの概念

    ブルームという人物が 1970 年にブルーム フィルター (英語名: Bloom Filter) を提案しました。これは実際には長いバイナリ ベクトルと一連のランダム マッピング関数です。ブルーム フィルターを使用すると、要素がコレクション内にあるかどうかを取得できます。利点はスペース効率とクエリ時間が通常のアルゴリズムよりもはるかに高いことですが、欠点は一定の誤認識率と削除の難しさです。

    ブルーム フィルターの原理

    ブルーム フィルターの原理は、要素がセットに追加されると、その要素が K 個のハッシュ関数を通じてビット配列内の K 点にマッピングされるというものです。それらを1にします。取得するとき、これらのポイントがすべて 1 であるかどうかを確認するだけで、それがセット内にあるかどうかを (おおよそ) 知ることができます: これらのポイントのいずれかが 0 である場合、チェックされた要素はそこに存在してはなりません; それらがすべて 1 である場合、次に、チェックされた要素が表示される可能性が高くなります。これがブルームフィルターの基本的な考え方です。

    ブルーム フィルターと単一ハッシュ関数ビットマップの違いは、ブルーム フィルターが k 個のハッシュ関数を使用し、各文字列が k ビットに対応することです。これにより、競合の可能性が軽減されます

    Redis BloomFilter ブルームフィルターの実装方法

    キャッシュの侵入

    Redis BloomFilter ブルームフィルターの実装方法

    ##すべてのクエリが DB に直接ヒットします

    つまり、簡単に言うと、最初にデータベースからすべてのデータをフィルターに読み込みます。たとえば、データベースの ID は 1、2、3

    になり、次に ID: 1 を使用します。例: 上の図で 3 回ハッシュした後、元の値が 0 だった 3 つの場所を 1 に変更しました。それからそれを 1 に変更します。 3 つのハッシュを取得し、3 つのハッシュの値が上記の 3 つの位置とまったく同じであることを確認します。これにより、フィルターに 1 があることが証明できます。

    逆に、異なる場合は、存在しないことを意味します。

    では、アプリケーションのシナリオはどこにあるのでしょうか?通常、キャッシュの故障を防ぐためにこれを使用します。

    簡単に言うと、データベースの ID は 1 から始まり、その後自動的に増加します。その後、インターフェースが ID によってクエリされることがわかっているので、負の値を使用します。クエリする数値。この時点で、データがキャッシュにないことがわかります。データベースにアクセスして確認しますが、見つかりません。1 つのリクエストは次のようなものです。100、1,000、または 10,000 はどうでしょうか?基本的にDBでは扱えません、これをキャッシュに追加すると存在しなくなります、そんなデータは無いと判断したらチェックしません、そのまま返した方が良いのではないでしょうか?データは空ですか?

    これがとても良いとしたら、欠点は何ですか?はい、続いて

    ブルーム フィルターのデメリット

    ブルーム フィルターの方が時間と空間の効率が良い理由は、判断の正確性が犠牲になるからです。

    #コンテナ内に検索すべき要素が含まれていない可能性もありますが、ハッシュ演算の関係上、これらの要素のハッシュ位置k個の値はすべて1となるため、誤判定につながる可能性があります。ブルームフィルターにブラックリストを格納する場合、誤判定の可能性がある要素を格納するホワイトリストを設けることで誤判定率を低減することができます。

    削除は困難です。コンテナ内に配置された要素は、ビット配列の k 番目の位置の 1 にマッピングされますが、削除する場合、単純に直接 0 に設定することは、他の要素の判定に影響を与える可能性があるためできません。 Counting Bloom Filter

    FAQ

    1 を使用できます。複数のハッシュ関数を使用する理由は何ですか?

    ハッシュ関数を 1 つだけ使用すると、ハッシュ自体が競合することがよくあります。たとえば、長さ 100 の配列の場合、ハッシュ関数が 1 つだけ使用されている場合、要素を 1 つ追加した後、2 番目の要素を追加するときの競合の確率は 1%、3 番目の要素を追加するときの競合の確率は 2 になります。 %... ただし、2 つの要素が使用されている場合、衝突の確率は 1% です。ハッシュ関数では、要素を追加した後、2 番目の要素を追加するときの競合の確率は 10,000 分の 4 に減少します (競合の可能性は 4 つあり、シチュエーションの総数 100x100)

    go 言語実装

    package main
    import (
    	"fmt"
    	"github.com/bits-and-blooms/bitset"
    )
    //设置哈希数组默认大小为16
    const DefaultSize = 16
    //设置种子,保证不同哈希函数有不同的计算方式
    var seeds = []uint{7, 11, 13, 31, 37, 61}
    //布隆过滤器结构,包括二进制数组和多个哈希函数
    type BloomFilter struct {
    	//使用第三方库
    	set *bitset.BitSet
    	//指定长度为6
    	hashFuncs [6]func(seed uint, value string) uint
    }
    //构造一个布隆过滤器,包括数组和哈希函数的初始化
    func NewBloomFilter() *BloomFilter {
    	bf := new(BloomFilter)
    	bf.set = bitset.New(DefaultSize)
    
    	for i := 0; i < len(bf.hashFuncs); i++ {
    		bf.hashFuncs[i] = createHash()
    	}
    	return bf
    }
    //构造6个哈希函数,每个哈希函数有参数seed保证计算方式的不同
    func createHash() func(seed uint, value string) uint {
    	return func(seed uint, value string) uint {
    		var result uint = 0
    		for i := 0; i < len(value); i++ {
    			result = result*seed + uint(value[i])
    		}
    		//length = 2^n 时,X % length = X & (length - 1)
    		return result & (DefaultSize - 1)
    	}
    }
    //添加元素
    func (b *BloomFilter) add(value string) {
    	for i, f := range b.hashFuncs {
    		//将哈希函数计算结果对应的数组位置1
    		b.set.Set(f(seeds[i], value))
    	}
    }
    //判断元素是否存在
    func (b *BloomFilter) contains(value string) bool {
    	//调用每个哈希函数,并且判断数组对应位是否为1
    	//如果不为1,直接返回false,表明一定不存在
    	for i, f := range b.hashFuncs {
    		//result = result && b.set.Test(f(seeds[i], value))
    		if !b.set.Test(f(seeds[i], value)) {
    			return false
    		}
    	}
    	return true
    }
    func main() {
    	filter := NewBloomFilter()
    	filter.add("asd")
    	fmt.Println(filter.contains("asd"))
    	fmt.Println(filter.contains("2222"))
    	fmt.Println(filter.contains("155343"))
    }

    出力結果は次のとおりです:

    true

    false

    false

    以上がRedis BloomFilter ブルームフィルターの実装方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

    声明
    この記事は亿速云で複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
    Redis vsデータベース:パフォーマンスの比較Redis vsデータベース:パフォーマンスの比較May 14, 2025 am 12:11 AM

    PerformStraditionaldatabasesinspeedforread/writeoperationsduetoitsinmemorynature、whieldatitionaldatabasesesexcelincomplearsanddataintegrity.1)Redisidealforreal-timeanalyticsandcaching、offeringphenomenalporfance.2)伝統的なダタベース

    従来のデータベースの代わりにRedisをいつ使用する必要がありますか?従来のデータベースの代わりにRedisをいつ使用する必要がありますか?May 13, 2025 pm 04:01 PM

    useredisinsteadofatraditationaldatabase whenyourapplicationreassandreal-timedataprocessing、suteasforcaching、sessionmanagement、orreal-timeanalytics.redisexcelsin:1)キャッシング、削減loadonprimarydatabases;

    Redis:SQLを超えて-NOSQLの視点Redis:SQLを超えて-NOSQLの視点May 08, 2025 am 12:25 AM

    Redisは、高性能と柔軟性のためにSQLデータベースを超えています。 1)Redisは、メモリストレージを介して非常に速い読み取りおよび書き込み速度を実現します。 2)複雑なデータ処理に適したリストやコレクションなど、さまざまなデータ構造をサポートしています。 3)シングルスレッドモデルは開発を簡素化しますが、高い並行性はボトルネックになる可能性があります。

    Redis:従来のデータベースサーバーとの比較Redis:従来のデータベースサーバーとの比較May 07, 2025 am 12:09 AM

    Redisは、並行性が高く、遅延の低いシナリオの従来のデータベースよりも優れていますが、複雑なクエリやトランザクション処理には適していません。 1.Redisは、メモリストレージ、高速読み取り速度、および高い並行性と低遅延の要件に適しています。 2.従来のデータベースは、ディスクに基づいており、複雑なクエリとトランザクション処理をサポートし、データの一貫性と永続性が強い。 3. Redisは、従来のデータベースのサプリメントまたは代替品として適していますが、特定のビジネスニーズに応じて選択する必要があります。

    Redis:強力なメモリデータストアの紹介Redis:強力なメモリデータストアの紹介May 06, 2025 am 12:08 AM

    redisisahigh-performancein-memorydatastructurturturestorettorethatedcelsinsinsinsversility.1)itsupportsvariousdatastructureslikestrings、lists、andsets.2)redisisaninmorydatabasewithpersistenceoptions、daturing datasafety.3)

    Redisは主にデータベースですか?Redisは主にデータベースですか?May 05, 2025 am 12:07 AM

    Redisは主にデータベースですが、単なるデータベース以上のものです。 1.データベースとして、Redisは持続性をサポートし、高性能のニーズに適しています。 2。キャッシュとして、Redisはアプリケーションの応答速度を改善します。 3。メッセージブローカーとして、Redisはリアルタイム通信に適したPublish-Subscribeモードをサポートしています。

    Redis:データベース、サーバー、または他の何か?Redis:データベース、サーバー、または他の何か?May 04, 2025 am 12:08 AM

    redisisamultifaCetedTooltoToolvesSasadatabase、server、andmore。

    Redis:その目的と主要なアプリケーションを発表しますRedis:その目的と主要なアプリケーションを発表しますMay 03, 2025 am 12:11 AM

    Redisisanopen-Source、In-MemoryDatastructurestoreStoreSadatabase、Cache、AndmessageBroker、ExcellingInspeedandversatility.ItisisWidely-susederCaching、Real-Timeanalytics、Session Management、AndleaderboardsdueTotutsuptorututrututrututruturturturturturturesturesaddataacys

    See all articles

    ホットAIツール

    Undresser.AI Undress

    Undresser.AI Undress

    リアルなヌード写真を作成する AI 搭載アプリ

    AI Clothes Remover

    AI Clothes Remover

    写真から衣服を削除するオンライン AI ツール。

    Undress AI Tool

    Undress AI Tool

    脱衣画像を無料で

    Clothoff.io

    Clothoff.io

    AI衣類リムーバー

    Video Face Swap

    Video Face Swap

    完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

    ホットツール

    SAP NetWeaver Server Adapter for Eclipse

    SAP NetWeaver Server Adapter for Eclipse

    Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

    SublimeText3 英語版

    SublimeText3 英語版

    推奨: Win バージョン、コードプロンプトをサポート!

    SecLists

    SecLists

    SecLists は、セキュリティ テスターの究極の相棒です。これは、セキュリティ評価中に頻繁に使用されるさまざまな種類のリストを 1 か所にまとめたものです。 SecLists は、セキュリティ テスターが必要とする可能性のあるすべてのリストを便利に提供することで、セキュリティ テストをより効率的かつ生産的にするのに役立ちます。リストの種類には、ユーザー名、パスワード、URL、ファジング ペイロード、機密データ パターン、Web シェルなどが含まれます。テスターはこのリポジトリを新しいテスト マシンにプルするだけで、必要なあらゆる種類のリストにアクセスできるようになります。

    SublimeText3 Mac版

    SublimeText3 Mac版

    神レベルのコード編集ソフト(SublimeText3)

    Safe Exam Browser

    Safe Exam Browser

    Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。