ブルーム フィルターの概念
ブルームという人物が 1970 年にブルーム フィルター (英語名: Bloom Filter) を提案しました。これは実際には長いバイナリ ベクトルと一連のランダム マッピング関数です。ブルーム フィルターを使用すると、要素がコレクション内にあるかどうかを取得できます。利点はスペース効率とクエリ時間が通常のアルゴリズムよりもはるかに高いことですが、欠点は一定の誤認識率と削除の難しさです。
ブルーム フィルターの原理
ブルーム フィルターの原理は、要素がセットに追加されると、その要素が K 個のハッシュ関数を通じてビット配列内の K 点にマッピングされるというものです。それらを1にします。取得するとき、これらのポイントがすべて 1 であるかどうかを確認するだけで、それがセット内にあるかどうかを (おおよそ) 知ることができます: これらのポイントのいずれかが 0 である場合、チェックされた要素はそこに存在してはなりません; それらがすべて 1 である場合、次に、チェックされた要素が表示される可能性が高くなります。これがブルームフィルターの基本的な考え方です。
ブルーム フィルターと単一ハッシュ関数ビットマップの違いは、ブルーム フィルターが k 個のハッシュ関数を使用し、各文字列が k ビットに対応することです。これにより、競合の可能性が軽減されます
キャッシュの侵入
つまり、簡単に言うと、最初にデータベースからすべてのデータをフィルターに読み込みます。たとえば、データベースの ID は 1、2、3 になり、次に ID: 1 を使用します。例: 上の図で 3 回ハッシュした後、元の値が 0 だった 3 つの場所を 1 に変更しました。それからそれを 1 に変更します。 3 つのハッシュを取得し、3 つのハッシュの値が上記の 3 つの位置とまったく同じであることを確認します。これにより、フィルターに 1 があることが証明できます。逆に、異なる場合は、存在しないことを意味します。 では、アプリケーションのシナリオはどこにあるのでしょうか?通常、キャッシュの故障を防ぐためにこれを使用します。簡単に言うと、データベースの ID は 1 から始まり、その後自動的に増加します。その後、インターフェースが ID によってクエリされることがわかっているので、負の値を使用します。クエリする数値。この時点で、データがキャッシュにないことがわかります。データベースにアクセスして確認しますが、見つかりません。1 つのリクエストは次のようなものです。100、1,000、または 10,000 はどうでしょうか?基本的にDBでは扱えません、これをキャッシュに追加すると存在しなくなります、そんなデータは無いと判断したらチェックしません、そのまま返した方が良いのではないでしょうか?データは空ですか? これがとても良いとしたら、欠点は何ですか?はい、続いて ブルーム フィルターのデメリットブルーム フィルターの方が時間と空間の効率が良い理由は、判断の正確性が犠牲になるからです。
#コンテナ内に検索すべき要素が含まれていない可能性もありますが、ハッシュ演算の関係上、これらの要素のハッシュ位置k個の値はすべて1となるため、誤判定につながる可能性があります。ブルームフィルターにブラックリストを格納する場合、誤判定の可能性がある要素を格納するホワイトリストを設けることで誤判定率を低減することができます。
削除は困難です。コンテナ内に配置された要素は、ビット配列の k 番目の位置の 1 にマッピングされますが、削除する場合、単純に直接 0 に設定することは、他の要素の判定に影響を与える可能性があるためできません。 Counting Bloom Filter
FAQ
1 を使用できます。複数のハッシュ関数を使用する理由は何ですか?
ハッシュ関数を 1 つだけ使用すると、ハッシュ自体が競合することがよくあります。たとえば、長さ 100 の配列の場合、ハッシュ関数が 1 つだけ使用されている場合、要素を 1 つ追加した後、2 番目の要素を追加するときの競合の確率は 1%、3 番目の要素を追加するときの競合の確率は 2 になります。 %... ただし、2 つの要素が使用されている場合、衝突の確率は 1% です。ハッシュ関数では、要素を追加した後、2 番目の要素を追加するときの競合の確率は 10,000 分の 4 に減少します (競合の可能性は 4 つあり、シチュエーションの総数 100x100)
go 言語実装
package main import ( "fmt" "github.com/bits-and-blooms/bitset" ) //设置哈希数组默认大小为16 const DefaultSize = 16 //设置种子,保证不同哈希函数有不同的计算方式 var seeds = []uint{7, 11, 13, 31, 37, 61} //布隆过滤器结构,包括二进制数组和多个哈希函数 type BloomFilter struct { //使用第三方库 set *bitset.BitSet //指定长度为6 hashFuncs [6]func(seed uint, value string) uint } //构造一个布隆过滤器,包括数组和哈希函数的初始化 func NewBloomFilter() *BloomFilter { bf := new(BloomFilter) bf.set = bitset.New(DefaultSize) for i := 0; i < len(bf.hashFuncs); i++ { bf.hashFuncs[i] = createHash() } return bf } //构造6个哈希函数,每个哈希函数有参数seed保证计算方式的不同 func createHash() func(seed uint, value string) uint { return func(seed uint, value string) uint { var result uint = 0 for i := 0; i < len(value); i++ { result = result*seed + uint(value[i]) } //length = 2^n 时,X % length = X & (length - 1) return result & (DefaultSize - 1) } } //添加元素 func (b *BloomFilter) add(value string) { for i, f := range b.hashFuncs { //将哈希函数计算结果对应的数组位置1 b.set.Set(f(seeds[i], value)) } } //判断元素是否存在 func (b *BloomFilter) contains(value string) bool { //调用每个哈希函数,并且判断数组对应位是否为1 //如果不为1,直接返回false,表明一定不存在 for i, f := range b.hashFuncs { //result = result && b.set.Test(f(seeds[i], value)) if !b.set.Test(f(seeds[i], value)) { return false } } return true } func main() { filter := NewBloomFilter() filter.add("asd") fmt.Println(filter.contains("asd")) fmt.Println(filter.contains("2222")) fmt.Println(filter.contains("155343")) }
出力結果は次のとおりです:
truefalse
false以上がRedis BloomFilter ブルームフィルターの実装方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Redisのデータモデルと構造には、5つの主要なタイプが含まれます。1。文字列:テキストまたはバイナリデータの保存に使用され、原子操作をサポートします。 2。リスト:キューとスタックに適した注文された要素コレクション。 3.セット:順序付けられていない一意の要素セット、セット操作をサポートします。 4。注文セット(sortedset):ランキングに適したスコアを持つ一意の要素セット。 5。ハッシュテーブル(ハッシュ):オブジェクトの保存に適したキー価値ペアのコレクション。

Redisのデータベースメソッドには、メモリ内データベースとキー価値ストレージが含まれます。 1)Redisはデータをメモリに保存し、速く読み取り、書き込みます。 2)キー価値のペアを使用してデータを保存し、キャッシュやNOSQLデータベースに適したリスト、コレクション、ハッシュテーブル、注文コレクションなどの複雑なデータ構造をサポートします。

Redisは、高速パフォーマンス、リッチデータ構造、高可用性とスケーラビリティ、持続性能力、幅広いエコシステムサポートを提供するため、強力なデータベースソリューションです。 1)非常に速いパフォーマンス:Redisのデータはメモリに保存され、非常に速い読み取り速度と書き込み速度が高く、高い並行性と低レイテンシアプリケーションに適しています。 2)豊富なデータ構造:さまざまなシナリオに適したリスト、コレクションなど、複数のデータ型をサポートします。 3)高可用性とスケーラビリティ:マスタースレーブの複製とクラスターモードをサポートして、高可用性と水平スケーラビリティを実現します。 4)持続性とデータセキュリティ:データの整合性と信頼性を確保するために、データの持続性がRDBとAOFを通じて達成されます。 5)幅広い生態系とコミュニティのサポート:巨大なエコシステムとアクティブなコミュニティにより、

Redisの主な機能には、速度、柔軟性、豊富なデータ構造のサポートが含まれます。 1)速度:Redisはメモリ内データベースであり、読み取り操作はほとんど瞬間的で、キャッシュとセッション管理に適しています。 2)柔軟性:複雑なデータ処理に適した文字列、リスト、コレクションなど、複数のデータ構造をサポートします。 3)データ構造のサポート:さまざまなビジネスニーズに適した文字列、リスト、コレクション、ハッシュテーブルなどを提供します。

Redisのコア関数は、高性能のメモリ内データストレージおよび処理システムです。 1)高速データアクセス:Redisはデータをメモリに保存し、マイクロ秒レベルの読み取り速度と書き込み速度を提供します。 2)豊富なデータ構造:文字列、リスト、コレクションなどをサポートし、さまざまなアプリケーションシナリオに適応します。 3)永続性:RDBとAOFを介してディスクにデータを持続します。 4)サブスクリプションを公開:メッセージキューまたはリアルタイム通信システムで使用できます。

Redisは、次のようなさまざまなデータ構造をサポートしています。1。文字列、単一価値データの保存に適しています。 2。キューやスタックに適したリスト。 3.非重複データの保存に使用されるセット。 4。ランキングリストと優先キューに適した注文セット。 5。オブジェクトまたは構造化されたデータの保存に適したハッシュテーブル。

Redisカウンターは、Redisキー価値ペアストレージを使用して、カウンターキーの作成、カウントの増加、カウントの減少、カウントのリセット、およびカウントの取得など、カウント操作を実装するメカニズムです。 Redisカウンターの利点には、高速速度、高い並行性、耐久性、シンプルさと使いやすさが含まれます。ユーザーアクセスカウント、リアルタイムメトリック追跡、ゲームのスコアとランキング、注文処理などのシナリオで使用できます。

Redisコマンドラインツール(Redis-Cli)を使用して、次の手順を使用してRedisを管理および操作します。サーバーに接続し、アドレスとポートを指定します。コマンド名とパラメーターを使用して、コマンドをサーバーに送信します。ヘルプコマンドを使用して、特定のコマンドのヘルプ情報を表示します。 QUITコマンドを使用して、コマンドラインツールを終了します。


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

AI Hentai Generator
AIヘンタイを無料で生成します。

人気の記事

ホットツール

EditPlus 中国語クラック版
サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません

MantisBT
Mantis は、製品の欠陥追跡を支援するために設計された、導入が簡単な Web ベースの欠陥追跡ツールです。 PHP、MySQL、Web サーバーが必要です。デモおよびホスティング サービスをチェックしてください。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

AtomエディタMac版ダウンロード
最も人気のあるオープンソースエディター
