検索
ホームページテクノロジー周辺機器AIChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

最近、華東師範大学の HugAILab チームは、研究者や開発者向けの包括的かつ統合された NLP トレーニング フレームワークである HugNLP フレームワークを開発しました。テキスト分類、テキスト マッチング、質問と回答、情報抽出をサポートできます。 , テキスト 生成や小規模サンプル学習など、さまざまな NLP タスク用のモデルを構築およびトレーニングします。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

オープンソース アドレス: https://github.com/HugAILab/HugNLP

論文: https://arxiv.org/abs/2302.14286

HugNLP には、多数の最新の Prompt テクノロジーも統合されていることに注目する価値があります。プロンプトチューニング、インコンテキスト学習、命令チューニング、思考連鎖などの機能は将来的に導入される予定です

HugAILab チームは一連のアプリケーションも開発しましたCLUE&GLUE ランキング ツールなど、ChatGPT モデルのトレーニングおよび展開製品 HugChat、統合情報抽出製品 HugIE などをサポートできます。

HugNLP は、「高凝集性、低結合性」の開発モデルに準拠した階層型フレームワークであり、そのコアにはモデル層 (Models)、プロセッサ層 (Processors)、評価器が含まれます。評価者とアプリケーションの 4 つの部分から構成されます。

#フレーム図は次のとおりです。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

    ## モデル層: モデル部分が含まれます。主にタスクの種類に応じて分割;
  • プロセッサ層: データのロード、キャッシュ、単語分割などのデータをモデル入力用の Tensor に変換します;
  • 評価層: タスクの種類 (分類または生成) に応じて異なる評価プロセスと評価指標を指定します;
  • アプリケーション層: 対応するアプリケーション実行スクリプト。理論的には、モデル、データ プロセッサ、評価者の選択はアプリケーションに対応します。
HugNLP は、HuggingFace に基づいて完全に開発されており、簡単な拡張および展開機能を備えています。また、MLFlow トレーニング トラッカーも統合されているため、ユーザーは実験の進行状況を時間内に追跡し、実験を行うことができます。分析。

HugNLP フレームワークは、多数の NLP タスク モデルを統合するため、包括的と呼ばれます。実装されているものは次のとおりです。 ##事前トレーニング: マスクされた LM、因果 LM、知識強化事前トレーニング;

命令チューニング: 自己回帰生成、区間抽出、NLI などの統合パラダイム トレーニングをサポートします。
  • ##テキスト分類/マッチング: 従来の微調整、プロンプトチューニング、コンテキスト内学習;
  • シーケンス アノテーション: NER およびその他のシーケンスをサポート注釈タスク ;
  • ##メタ学習: シーケンスベースのメタ学習 (SentenceProto)、間隔ベースのメタ学習 (SpanProto)、トークンベースのメタ学習 (TokenProto、NNShot);
  • Q&A: 抽出 Q&A、多肢選択 Q&A、オープンジェネレーティブ Q&A をサポート;
  • テキスト生成: テキスト要約、機械翻訳をサポート (開発中 );
  • コード インテリジェンス: 現在、コード クローン検出 (Clone) やコード欠陥検出 (Defact) などのコード タスクと統合されています;
  • HugNLP フレームワークをすばやくデプロイする
  • 、3 行のコードを実行するだけです:
  • git clone https://github.com/HugAILab/HugNLP.gitcd HugNLPpython3 setup.py install
  • 次に、HugNLP のいくつかのコア機能を紹介します。

##ワンクリック ランキングのベンチマーク;

事前トレーニングと知識の注入;

    微調整と即時調整;
  • 指示の調整;
  • ##コンテキスト学習;
  • 半分は自己トレーニングを監督;
  • コード コード インテリジェンス;
  • 1. ワンクリック ランキングのベンチマーク
  • HugNLP GLUE、CLUE などのいくつかの一般的なランキングのためのランキング ツールを初めて開発しました。ユーザーは対応するデータセット名を設定するだけで、ワンクリックで更新を実行できます。
  • 为了验证框架的有效性,在22年9月提交了CLUE榜单的刷榜结果,选择一系列中文小模型(RoBERTa、MacBERT、P-BERT等)并结合了logits集成方法,至今依然维持在第15名位置,曾一度超越了部分企业。

    ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

    例如如果训练CLUE榜单的AFQMC数据集,可编辑文件

applications/benchmark/clue/clue_finetune_dev.sh

修改参数:

--user_defined="data_name=afqmc"

执行下列命令即可:

bash applications/benchmark/clue/clue_finetune_dev.sh

同样的方法还可以训练一些常用的NLP任务,例如阅读理解、实体识别、以及GLUE英文数据集等。

HugNLP还集成了一系列模型用于刷榜,例如BERT、RoBERTa、DeBERTa、MacBERT、Erlangshen等。

二、预训练与知识注入

传统的一些预训练模型(例如BERT、GPT2等)是在通用语料上训练的,而对领域事实知识可能不敏感,因此需要显式的在预训练阶段注入事实知识。

HugNLP实现了多个知识增强预训练技术,其中包括DKPLM和KP-PLM。可分解的知识注入方法DKPLM和将结构化知识转化为自然语言形式的注入方法KP-PLM是两种不同的注入方式。由于这些知识注入方法采用的是可插拔式的设计,因此无需改变模型结构,这使得在下游任务上进行微调非常容易。

执行下面命令即可进行Masked Language Modeling和Causal Language Modeling的预训练:

bash applications/pretraining/run_pretrain_mlm.shbash applications/pretraining/run_pretrain_casual_lm.sh

三、 Fine-tuning & Prompt-Tuning

Pre-training和Fine-tuning模式通常被遵循,以基于预训练语言模型的NLP。HugNLP也包含Fine-tuning技术。

3.1 参数有效性学习

HugNLP集成了包括Prefix-tuning、Adapter、BitFit、LoRA等参数有效性训练方法,可以加速模型的训练,降低显存占用量。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

在训练脚本中,只需要添加一行参数,即可开启参数有效性训练:

--use_freezing

对于参数有效性方法,HugNLP实现了若干类别的分类模型,如下所示:

CLASSIFICATION_MODEL_CLASSES = { "head_prefix_cls": { "bert": BertPrefixForSequenceClassification, "roberta": RobertaPrefixForSequenceClassification, }, "head_ptuning_cls": { "bert": BertPtuningForSequenceClassification, "roberta": RobertaPtuningForSequenceClassification, }, "head_adapter_cls": { "bert": BertAdapterForSequenceClassification, "roberta": RobertaAdapterForSequenceClassification, }, "masked_prompt_cls": { "bert": PromptBertForSequenceClassification, "roberta": PromptRobertaForSequenceClassification, },  "masked_prompt_prefix_cls": { "bert": PromptBertPrefixForSequenceClassification, "roberta": PromptRobertaPrefixForSequenceClassification, }, "masked_prompt_ptuning_cls": { "bert": PromptBertPtuningForSequenceClassification, "roberta": PromptRobertaPtuningForSequenceClassification, }, "masked_prompt_adapter_cls": { "bert": PromptBertAdapterForSequenceClassification, "roberta": PromptRobertaAdapterForSequenceClassification, }, }

只需要指定下面参数即可,例如选择adapter进行分类:

--task_type=head_adapter_cls

3.2 对抗训练:引入对Embedding的扰动,提高模型的鲁棒性

HugNLP框架集成了若干种对抗训练的方法,其中最简单的对抗方法为FGM算法:

  • 首先计算输入样本(通常为word embedding)的损失函数以及在处的梯度:;
  • 计算在输入样本的扰动量:,其中为超参数,默认取1.0;
  • 得到对抗样本:;
  • 根据得到的对抗样本,再次喂入模型中,计算损失,并累积梯度;
  • 恢复原始的word embedding,接着下一个batch。

在训练时,只需要添加一行参数,即可默认调用FGM算法:

--do_adv

3.3 Prompt-tuning:通过模板来复用预训练目标

传统的Fine-tuning在低资源场景下容易出现过拟合问题,因此复用预训练的目标可以拉近Pre-training和Fine-tuning之间的语义差异。

HugNLP集成了PET、P-tuning、Prefix-tuning等Prompt-Tuning算法,并无缝嵌入在NLP分类任务的模型里。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

在训练时,只需要指定下面两个参数,即可以开启Prompt-tuning模式,例如选择p-tuning算法:

--task_type=masked_prompt_ptuning_cls--use_prompt_for_cls

四、Instruction-tuning

在构建通用人工智能之前,必须将不同类型的自然语言处理任务进行范式统一,尤其是在大模型时代。HugNLP为此定义了三种统一范式的思想:

  • 万物皆可生成:将所有NLP任务建模为单向自回归生成,例如GPT-3、ChatGPT等;
  • 万物皆可抽取:将所有NLP任务建模为抽取式机器阅读理解;
  • 万物皆可推断:将所有NLP任务建模为自然语言推断;

基于三种不同的范式统一,HugNLP推出两个核心产品,分别是:

  • HugChat:基于生成式Instruction的中小型ChatGPT类模型;
  • HugIE:基于抽取式Instruction的统一信息抽取框架;

4.1 HugChat:基于Causal Language Modeling的生成式对话模型

最近ChatGPT火爆全球,为了让研究者可以训练自己的ChatGPT,HugNLP框架集成了基于生成式Instruction的训练产品——HugChat,其支持各种类型的单向生成式模型的训练,例如GPT-2、GPT-Neo、OPT、GLM、LLaMA等。

在8张V100 32G的条件下,可训练OPT-13B大模型。HugAILab团队公布了大约200万条英文和300万条中文的对话数据,以用于模型训练。例如训练GPT-2(XL),可直接执行脚本:

bash ./application/instruction_prompting/HugChat/supervised_finetuning/run_causal_instruction_gpt2_xl.sh

使用基于HugNLP训练的GPT-2(1.3B)模型可以轻松地完成对话任务。只需要执行如下命令即可玩转HugChat:

python3 applications/instruction_prompting/HugChat/hugchat.py

例如可以写套磁信邮件:

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

再例如搜索谷歌地球的相关信息:

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

也可以实现编写简单的代码(1.3B的模型具备此能力已经很惊叹了!):

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

HugNLP目前正在开发其他类型的Decoder-only大模型,相关信息和开源内容如下表所示:

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

HugChat后期将推出垂直领域的大模型解决方案,同时将与OpenAI API进行融合,推出大模型服务框架。

4.2 HugIE:基于Global Pointer的统一信息抽取框架

信息抽取(Information Extraction)旨在从非结构化的文本中抽取出结构化信息,是构建知识库的重要步骤之一。通常信息抽取包括两个核心步骤,分别是命名实体识别(Named Entity Recognition)和关系抽取(Relation Extraction)。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

我们基于HugNLP研发一款HugIE产品,旨在实现统一信息处理。其主要核心包括如下几个部分:

  • 将实体识别和关系抽取,统一为新的范式——基于抽取式阅读理解的方法。HugIE采用Global Pointer模型实现信息抽取;
  • 定义Instruction Prompt,指导模型生成需要抽取的内容;
  • 采用多任务训练的方法训练;

HugIE目前已经开源了模型:https://huggingface.co/wjn1996/wjn1996-hugnlp-hugie-large-zh 可以基于HugNLP框架使用HugIE抽取模型,如下图所示:

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

五、In-Context Learning

In-Context Learning(ICL) 首次由GPT-3提出,其旨在挑选少量的标注样本作为提示(Prompt),从而在形式上促使大模型生成目标答案。ICL的优势在于无需对参数进行更新,即可实现惊艳的效果。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

HugNLP框架集成了ICL,主要涉及到样本的挑选和预测结果的校准两个部分:

  • 样本挑选:默认为从训练集中随机挑选样本,后期将会开发一系列样本挑选的算法,例如聚类、K近邻、余弦相似度等;
  • 预测校准:由于所挑选标注样本与待预测样本存在分布差异,需要对预测的概率分布进行校准,这里采用Calibrate Before Use方法,如下图,可以对预测分布进行校准,提高预测效果。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

目前ICL已经集成在HugNLP里,只需要指定下面参数即可:

--user_defined="data_name=xxx num_incontext_example=4 l=1 use_calibrate=True"--use_prompt_for_cls

六、半监督Self-training

半监督旨在同时结合标注数据和无标签数据来训练NLP任务。Self-training是一种简单但有效的迭代式训练方法,其通过Teacher模型先获取伪标签,对伪标签进行去噪后,再训练Student模型。Self-training方法传统上存在着较多噪声,可能会削弱训练结果。

为了提高性能,HugNLP引入成熟的Uncertainty-aware Self-training技术。框架图如下所示:

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

其采用了来自贝叶斯推断中的MC Dropout技术,即对Teacher模型执行 次推理,每次推理开启Dropout开关,从而得到若干与Teacher模型满足独立同分布的模型预测。

基于这些预测结果,可以通过信息熵的变化量得到Teacher模型对无标签数据的不确定性量化指标(即BALD算法),核心公式如下:

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

进行多次DC Dropout的代码实现如下(详见hugnlp_trainer.py):

y_T = list()for i in tqdm(range(T)): y_pred = [] for step, inputs in enumerate(unlabeled_dataloader): _, logits, __ = self.prediction_step(model, inputs, prediction_loss_only, ignore_keys=ignore_keys) y_pred.extend(logits.detach().cpu().numpy().tolist()) predict_proba = torch.softmax(torch.Tensor(y_pred).to(logits.device), -1) y_T.append(predict_proba.detach().cpu().numpy().tolist()) y_T = np.array(y_T)#compute mean y_mean = np.mean(y_T, axis=0)BALD算法实现如下:def get_BALD_acquisition(y_T):expected_entropy = - np.mean(np.sum(y_T * np.log(y_T + 1e-10), axis=-1), axis=0)expected_p = np.mean(y_T, axis=0)entropy_expected_p = - np.sum(expected_p * np.log(expected_p + 1e-10), axis=-1)return (entropy_expected_p - expected_entropy)

HugNLP使用半监督模式,只需要做两件事:

(1)执行脚本时添加参数:

--use_semi

(2)在指定的数据集目录下,存放unlabeled data文件。

七、其他更丰富的应用

HugNLP has developed numerous applications as listed below, and there are many more exciting applications currently under development.。HugNLP欢迎有志之士加入HugAILab参与开源开发工作。

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します

ChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合します


以上がChatGPT モデルは直接トレーニングできます。華東師範大学と NUS のオープンソース HugNLP フレームワーク: ワンクリックでランキングを更新し、NLP トレーニングを完全に統合しますの詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

声明
この記事は51CTO.COMで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。
AIのスキルギャップは、サプライチェーンのダウンを遅くしていますAIのスキルギャップは、サプライチェーンのダウンを遅くしていますApr 26, 2025 am 11:13 AM

「AI-Ready労働力」という用語は頻繁に使用されますが、サプライチェーン業界ではどういう意味ですか? サプライチェーン管理協会(ASCM)のCEOであるAbe Eshkenaziによると、批評家ができる専門家を意味します

1つの会社がAIを永遠に変えるために静かに取り組んでいる方法1つの会社がAIを永遠に変えるために静かに取り組んでいる方法Apr 26, 2025 am 11:12 AM

分散型AI革命は静かに勢いを増しています。 今週の金曜日、テキサス州オースティンでは、ビテンサーのエンドゲームサミットは極めて重要な瞬間を示し、理論から実用的な応用に分散したAI(DEAI)を移行します。 派手なコマーシャルとは異なり

Nvidiaは、AIエージェント開発を合理化するためにNEMOマイクロサービスをリリースしますNvidiaは、AIエージェント開発を合理化するためにNEMOマイクロサービスをリリースしますApr 26, 2025 am 11:11 AM

エンタープライズAIはデータ統合の課題に直面しています エンタープライズAIの適用は、ビジネスデータを継続的に学習することで正確性と実用性を維持できるシステムを構築する大きな課題に直面しています。 NEMOマイクロサービスは、NVIDIAが「データフライホイール」と呼んでいるものを作成することにより、この問題を解決し、AIシステムがエンタープライズ情報とユーザーインタラクションへの継続的な露出を通じて関連性を維持できるようにします。 この新しく発売されたツールキットには、5つの重要なマイクロサービスが含まれています。 NEMOカスタマイザーは、より高いトレーニングスループットを備えた大規模な言語モデルの微調整を処理します。 NEMO評価者は、カスタムベンチマークのAIモデルの簡素化された評価を提供します。 Nemo Guardrailsは、コンプライアンスと適切性を維持するためにセキュリティ管理を実装しています

aiは芸術とデザインの未来のために新しい絵を描きますaiは芸術とデザインの未来のために新しい絵を描きますApr 26, 2025 am 11:10 AM

AI:芸術とデザインの未来 人工知能(AI)は、前例のない方法で芸術とデザインの分野を変えており、その影響はもはやアマチュアに限定されませんが、より深く影響を与えています。 AIによって生成されたアートワークとデザインスキームは、広告、ソーシャルメディアの画像生成、Webデザインなど、多くのトランザクションデザインアクティビティで従来の素材画像とデザイナーに迅速に置き換えられています。 ただし、プロのアーティストやデザイナーもAIの実用的な価値を見つけています。 AIを補助ツールとして使用して、新しい美的可能性を探求し、さまざまなスタイルをブレンドし、新しい視覚効果を作成します。 AIは、アーティストやデザイナーが繰り返しタスクを自動化し、さまざまなデザイン要素を提案し、創造的な入力を提供するのを支援します。 AIはスタイル転送をサポートします。これは、画像のスタイルを適用することです

エージェントAIとのズームがどのように革命を起こしているか:会議からマイルストーンまでエージェントAIとのズームがどのように革命を起こしているか:会議からマイルストーンまでApr 26, 2025 am 11:09 AM

最初はビデオ会議プラットフォームで知られていたZoomは、エージェントAIの革新的な使用で職場革命をリードしています。 ZoomのCTOであるXD Huangとの最近の会話は、同社の野心的なビジョンを明らかにしました。 エージェントAIの定義 huang d

大学に対する実存的な脅威大学に対する実存的な脅威Apr 26, 2025 am 11:08 AM

AIは教育に革命をもたらしますか? この質問は、教育者と利害関係者の間で深刻な反省を促しています。 AIの教育への統合は、機会と課題の両方をもたらします。 Tech Edvocate NotesのMatthew Lynch、Universitとして

プロトタイプ:アメリカの科学者は海外の仕事を探していますプロトタイプ:アメリカの科学者は海外の仕事を探していますApr 26, 2025 am 11:07 AM

米国における科学的研究と技術の開発は、おそらく予算削減のために課題に直面する可能性があります。 Natureによると、海外の雇用を申請するアメリカの科学者の数は、2024年の同じ期間と比較して、2025年1月から3月まで32%増加しました。以前の世論調査では、調査した研究者の75%がヨーロッパとカナダでの仕事の検索を検討していることが示されました。 NIHとNSFの助成金は過去数か月で終了し、NIHの新しい助成金は今年約23億ドル減少し、3分の1近く減少しました。リークされた予算の提案は、トランプ政権が科学機関の予算を急激に削減していることを検討しており、最大50%の削減の可能性があることを示しています。 基礎研究の分野での混乱は、米国の主要な利点の1つである海外の才能を引き付けることにも影響を与えています。 35

オープンAIの最新のGPT 4.1ファミリ - 分析VidhyaオープンAIの最新のGPT 4.1ファミリ - 分析VidhyaApr 26, 2025 am 10:19 AM

Openaiは、強力なGPT-4.1シリーズを発表しました。実際のアプリケーション向けに設計された3つの高度な言語モデルのファミリー。 この大幅な飛躍は、より速い応答時間、理解の強化、およびTと比較した大幅に削減されたコストを提供します

See all articles

ホットAIツール

Undresser.AI Undress

Undresser.AI Undress

リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover

AI Clothes Remover

写真から衣服を削除するオンライン AI ツール。

Undress AI Tool

Undress AI Tool

脱衣画像を無料で

Clothoff.io

Clothoff.io

AI衣類リムーバー

Video Face Swap

Video Face Swap

完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

ホットツール

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser は、オンライン試験を安全に受験するための安全なブラウザ環境です。このソフトウェアは、あらゆるコンピュータを安全なワークステーションに変えます。あらゆるユーティリティへのアクセスを制御し、学生が無許可のリソースを使用するのを防ぎます。

メモ帳++7.3.1

メモ帳++7.3.1

使いやすく無料のコードエディター

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

SublimeText3 中国語版

SublimeText3 中国語版

中国語版、とても使いやすい

EditPlus 中国語クラック版

EditPlus 中国語クラック版

サイズが小さく、構文の強調表示、コード プロンプト機能はサポートされていません