マルチテーブル クエリは、関連付けられたクエリとも呼ばれ、クエリ操作を一緒に完了する 2 つ以上のテーブルを指します。
前提条件: 一緒にクエリされるこれらのテーブル間には関係があり (1 対 1、1 対多)、それらの間に関連フィールドが存在する必要があります。この関連フィールドには外部キーがある場合があります。外部キーが作成されない可能性があります。たとえば、従業員テーブルと部門テーブル、これら 2 つのテーブルは「部門番号」によって関連付けられています。
従業員の名前と部門の名前をクエリしたい場合
これら 2 つのフィールドは別のテーブルにあります。関連する条件をクエリして、結果がどうなるか見てみましょう。
SELECT last_name, department_name FROM employees, departments; +-----------+----------------------+ | last_name | department_name | +-----------+----------------------+ | King | Administration | | King | Marketing | | King | Purchasing | | King | Human Resources | | King | Shipping | | King | IT | | King | Public Relations | | King | Sales | | King | Executive | | King | Finance | | King | Accounting | | King | Treasury | ... | Gietz | IT Support | | Gietz | NOC | | Gietz | IT Helpdesk | | Gietz | Government Sales | | Gietz | Retail Sales | | Gietz | Recruiting | | Gietz | Payroll | +-----------+----------------------+ 2889 rows in set (0.01 sec)
SELECT COUNT(employee_id) FROM employees; #输出107行 SELECT COUNT(department_id)FROM departments; #输出27行 SELECT 107*27 FROM dual; 107*27=2889
明らかに上記の操作は間違っています
上記の操作により、従業員テーブルのレコードが部門テーブルの各レコードに関連付けられます。は、従業員がすべての部門で働いているかのようです。実際的な観点から、この状況が起こらないことは明らかです。
この現象はデカルト積です。
デカルト積はリレーショナル代数の概念であり、2 つのテーブルのデータの各行が別のテーブルのデータの各行と結合されることを意味します。 。例: 2 つのテーブルがあり、左側のテーブルには m 個のデータ レコードと x フィールドがあり、右側のテーブルには n 個のデータ レコードと y フィールドがあります。クロスコネクトを実行すると、m*n 個のデータ レコードと x y フィールドが返されます。デカルト積の概略図を図に示します。
SQL92 では、デカルト積はクロス結合とも呼ばれ、英語では
CROSS JOIN
となります。 SQL99 では、CROSS JOIN は相互接続を表すためにも使用されます。この機能は、2 つのテーブルが関連していない場合でも、任意のテーブルを結合することです。 MySQL では、デカルト積は次の状況で発生します:
従業員名と部門名のクエリSELECT last_name,department_name FROM employees,departments; SELECT last_name,department_name FROM employees CROSS JOIN departments; SELECT last_name,department_name FROM employees INNER JOIN departments; SELECT last_name,department_name FROM employees JOIN departments;
デカルト積エラーは次の条件で発生します:
デカルト積エラーは次の条件で発生します:
複数のテーブルの接続条件(または関連付け条件)を省略してください
SELECT table1.column, table2.column FROM table1, table2 WHERE table1.column1 = table2.column2; #连接条件
#案例:查询员工的姓名及其部门名称 SELECT last_name, department_name FROM employees, departments WHERE employees.department_id = departments.department_id;
SELECT employees.last_name, departments.department_name,employees.department_id FROM employees, departments WHERE employees.department_id = departments.department_id;
2. 複数テーブル クエリの分類
特定のフィールド > 特定の値などのレコードのクエリなど、非同等の接続の場合は、を使用できます。エイリアス クエリを簡素化します。 — 一部のフィールド名が長すぎます。列名の前にテーブル名のプレフィックスを使用すると、クエリの効率が向上します。
##SELECT employees.employee_id, employees.last_name, employees.department_id, departments.department_id, departments.location_id FROM employees, departments WHERE employees.department_id = departments.department_id;Extension:
SELECT e.employee_id, e.last_name, e.department_id, d.department_id, d.location_id FROM employees e , departments d WHERE e.department_id = d.department_id;
テーブルのエイリアスを使用する場合、そのエイリアスはクエリ フィールドとフィルター条件でのみ使用でき、元のテーブル名は使用できないことに注意してください。使用しないとエラーが報告されます。2. 自己結合と非自己結合
これらを 1 つのテーブルだけに関連付ける方法がないことはわかっています。これらを関連付けたい場合は、関連付け条件が必要です。 2 この時点で、元のテーブルと本質的に同じテーブルを抽出し、そのテーブルにエイリアスを付けることができます。Table1 と table2 は本質的に同じテーブルですが、エイリアスを使用して仮想化されています。2 つのテーブルは異なる意味を表します。次に、2 つのテーブルが内部結合、外部結合、その他のクエリを実行します。例: 従業員と対応する上司の名前を検索したい場合は、自己結合を使用できます。
SELECT CONCAT(worker.last_name ,' works for ' , manager.last_name) FROM employees worker, employees manager WHERE worker.manager_id = manager.employee_id ;
演習: last_name を &lsquo としてクエリします。 ;Chen の従業員のマネージャー情報。内部結合: 同じ列を持つ 3 つ以上のテーブルの行をマージします。3. 内部結合と外部結合
#
外连接: 两个表在连接过程中除了返回满足连接条件的行以外还返回左(或右)表中不满足条件的行 ,这种连接称为左(或右) 外连接。没有匹配的行时, 结果表中相应的列为空(NULL)。
如果是左外连接,则连接条件中左边的表也称为主表,右边的表称为从表。
如果是右外连接,则连接条件中右边的表也称为主表,左边的表称为从表。
外连接查询的数据比较多
SQL92:使用(+)创建连接在 SQL92 中采用(+)代表从表所在的位置。即左或右外连接中,(+) 表示哪个是从表。
Oracle 对 SQL92 支持较好,而 MySQL 则不支持 SQL92 的外连接。
#左外连接 SELECT last_name,department_name FROM employees ,departments WHERE employees.department_id = departments.department_id(+); #右外连接 SELECT last_name,department_name FROM employees ,departments WHERE employees.department_id(+) = departments.department_id; ```
SQL99语法实现多表查询
1.基本语法
使用JOIN…ON子句创建连接的语法结构:SELECT table1.column, table2.column,table3.column FROM table1 JOIN table2 ON table1 和 table2 的连接条件 JOIN table3 ON table2 和 table3 的连接条件语法说明:
可以使用 ON 子句指定额外的连接条件 。
这个连接条件是与其它条件分开的。ON 子句使语句具有更高的易读性。关键字 JOIN、INNER JOIN、CROSS JOIN 的含义是一样的,都表示内连接2.内连接(INNER JOIN)
语法
select 字段
from 表1
join 表2 on 两个表的连接条件
where 其他子句
以查询各个部门的员工信息为例,它们之间的连接条件是员工表中的部门id与部门表中的部门id相同
SELECT e.employee_id, e.last_name, e.department_id, d.department_id, d.location_id FROM employees e JOIN departments d ON (e.department_id = d.department_id); 这里截取部分结果 +-------------+-------------+---------------+---------------+-------------+ | employee_id | last_name | department_id | department_id | location_id | +-------------+-------------+---------------+---------------+-------------+ | 103 | Hunold | 60 | 60 | 1400 | | 104 | Ernst | 60 | 60 | 1400 | | 105 | Austin | 60 | 60 | 1400 | | 106 | Pataballa | 60 | 60 | 1400 | | 107 | Lorentz | 60 | 60 | 1400 | | 120 | Weiss | 50 | 50 | 1500 | | 121 | Fripp | 50 | 50 | 1500 | | 122 | Kaufling | 50 | 50 | 1500 | | 123 | Vollman | 50 | 50 | 1500 | | 124 | Mourgos | 50 | 50 | 1500 | | 125 | Nayer | 50 | 50 | 1500 | | 126 | Mikkilineni | 50 | 50 | 1500 | | 127 | Landry | 50 | 50 | 1500 | | 128 | Markle | 50 | 50 | 1500 | | 129 | Bissot | 50 | 50 | 1500 |
使用内连接的一个问题就是他们把所有的信息都显示出来,它只能够显示匹配的数据,而外连接可以把不匹配的数据也显示出来
先来看看表的数据,方便后续操作
mysql> select * from emp; +-------+--------+-----------+------+------------+---------+---------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+--------+-----------+------+------------+---------+---------+--------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | +-------+--------+-----------+------+------------+---------+---------+--------+ 14 rows in set (0.00 sec)
mysql> select * from dept; +--------+------------+----------+ | DEPTNO | DNAME | LOC | +--------+------------+----------+ | 10 | ACCOUNTING | NEW YORK | | 20 | RESEARCH | DALLAS | | 30 | SALES | CHICAGO | | 40 | OPERATIONS | BOSTON | +--------+------------+----------+ 4 rows in set (0.00 sec)
mysql> select * from emp e -> join dept d -> on e.deptno=e.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 10 | ACCOUNTING | NEW YORK | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 10 | ACCOUNTING | NEW YORK | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 10 | ACCOUNTING | NEW YORK | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 10 | ACCOUNTING | NEW YORK | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 10 | ACCOUNTING | NEW YORK | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 10 | ACCOUNTING | NEW YORK | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 10 | ACCOUNTING | NEW YORK | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 10 | ACCOUNTING | NEW YORK | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 10 | ACCOUNTING | NEW YORK | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 10 | ACCOUNTING | NEW YORK | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 10 | ACCOUNTING | NEW YORK | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 20 | RESEARCH | DALLAS | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 20 | RESEARCH | DALLAS | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 20 | RESEARCH | DALLAS | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 20 | RESEARCH | DALLAS | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 20 | RESEARCH | DALLAS | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 20 | RESEARCH | DALLAS | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 20 | RESEARCH | DALLAS | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 20 | RESEARCH | DALLAS | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 20 | RESEARCH | DALLAS | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 30 | SALES | CHICAGO | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 30 | SALES | CHICAGO | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 30 | SALES | CHICAGO | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 30 | SALES | CHICAGO | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 30 | SALES | CHICAGO | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 30 | SALES | CHICAGO | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 40 | OPERATIONS | BOSTON | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 40 | OPERATIONS | BOSTON | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 40 | OPERATIONS | BOSTON | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 40 | OPERATIONS | BOSTON | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 40 | OPERATIONS | BOSTON | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 40 | OPERATIONS | BOSTON | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 40 | OPERATIONS | BOSTON | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 40 | OPERATIONS | BOSTON | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 40 | OPERATIONS | BOSTON | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 40 | OPERATIONS | BOSTON | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 40 | OPERATIONS | BOSTON | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 40 | OPERATIONS | BOSTON | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 40 | OPERATIONS | BOSTON | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 40 | OPERATIONS | BOSTON | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 56 rows in set (0.01 sec)
– 问题:
– 1.40号部分没有员工,没有显示在查询结果中
– 2.员工scott没有部门,没有显示在查询结果中
所以想显示所有数据,要使用外连接
外连接(OUTER JOIN)
1.左外连接左外连接: left outer join – 左面的那个表的信息,即使不匹配也可以查看出效果
SELECT 字段列表
FROM A表 LEFT JOIN B表
ON 关联条件
WHERE 等其他子句;2.右外连接
SELECT 字段列表
FROM A表 RIGHT JOIN B表
ON 关联条件
WHERE 等其他子句;
mysql> select * -> from emp e -> right outer join dept d -> on e.deptno = d.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | 40 | OPERATIONS | BOSTON | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 15 rows in set (0.00 sec)
3.满外连接(FULL OUTER JOIN)
满外连接的结果 = 左右表匹配的数据 + 左表没有匹配到的数据 + 右表没有匹配到的数据。
SQL99是支持满外连接的。使用FULL JOIN 或 FULL OUTER JOIN来实现。
需要注意的是,MySQL不支持FULL JOIN,但是可以用 LEFT JOIN UNION RIGHT join代替。
在讲满外连接之前,我们先来介绍一下union关键字的使用,相信看了以后大家就清楚了
合并查询结果
使用UNION关键字,可以将多个SELECT语句的结果组合成一个结果集。合并时,两个表对应的列数和数据类型必须相同,并且相互对应。使用UNION或UNION ALL关键字来分隔各个SELECT语句。
语法格式:
SELECT column,… FROM table1
UNION [ALL]
SELECT column,… FROM table2
UNION操作符
UNION 操作符返回两个查询的结果集的并集,去除重复记录。
`UNION ALL操作符
UNION ALL操作符返回两个查询的结果集的并集。对于两个结果集的重复部分,不去重。
注意:执行UNION ALL语句时所需要的资源比UNION语句少。如果明确知道合并数据后的结果数据不存在重复数据,或者不需要去除重复的数据,则尽量使用UNION ALL语句,以提高数据查询的效率。
为什么union all的效率比较高呢?首先我们如果使用union的话,它会先把数据查询出来,紧接着还要进去去重操作,它多了一步去重操作,当然花费的时间就比较多了,影响效率。
mysql> select * -> from emp e -> left outer join dept d -> on e.deptno = d.deptno -> union -- 并集 去重 效率低 -> select * -> from emp e -> right outer join dept d -> on e.deptno = d.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | 40 | OPERATIONS | BOSTON | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 15 rows in set (0.01 sec) mysql> ^C mysql> https://blog.csdn.net/weixin_42250835/article/details/123535439^Z^Z^C mysql> select * -> from emp e -> left outer join dept d -> on e.deptno = d.deptno -> union -- 并集 去重 效率低 -> select * -> from emp e -> right outer join dept d -> on e.deptno = d.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | 40 | OPERATIONS | BOSTON | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 15 rows in set (0.00 sec) mysql> select * -> from emp e -> left outer join dept d -> on e.deptno = d.deptno -> union all-- 并集 不去重 效率高 -> select * -> from emp e -> right outer join dept d -> on e.deptno = d.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | 40 | OPERATIONS | BOSTON | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 29 rows in set (0.00 sec)
为了让大家更清楚知道他们的区别,我们分别看一下有多少记录
-> on e.deptno = d.deptno' at line 2 mysql> select * -> from emp e -> left outer join dept d -> on e.deptno = d.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 14 rows in set (0.00 sec) mysql> select * -> from emp e -> right outer join dept d -> on e.deptno = d.deptno; +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | DEPTNO | DNAME | LOC | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | 10 | ACCOUNTING | NEW YORK | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | 20 | RESEARCH | DALLAS | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | 30 | SALES | CHICAGO | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | 30 | SALES | CHICAGO | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | 30 | SALES | CHICAGO | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | 30 | SALES | CHICAGO | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | 30 | SALES | CHICAGO | | NULL | NULL | NULL | NULL | NULL | NULL | NULL | NULL | 40 | OPERATIONS | BOSTON | +-------+--------+-----------+------+------------+---------+---------+--------+--------+------------+----------+ 15 rows in set (0.00 sec)
14+15=29所=所以可以看出union all确实是不去重
中图:内连接 A∩B SELECT employee_id,last_name,department_name FROM employees e JOIN departments d ON e.`department_id` = d.`department_id`;
左上图:左外连接 SELECT employee_id,last_name,department_name FROM employees e LEFT JOIN departments d ON e.`department_id` = d.`department_id`;
右上图:右外连接 SELECT employee_id,last_name,department_name FROM employees e RIGHT JOIN departments d ON e.`department_id` = d.`department_id`;
左中图:A - A∩B SELECT employee_id,last_name,department_name FROM employees e LEFT JOIN departments d ON e.`department_id` = d.`department_id` WHERE d.`department_id` IS NULL
右中图:B-A∩B SELECT employee_id,last_name,department_name FROM employees e RIGHT JOIN departments d ON e.`department_id` = d.`department_id` WHERE e.`department_id` IS NULL
左下图:满外连接 左中图 + 右上图 A∪B SELECT employee_id,last_name,department_name FROM employees e LEFT JOIN departments d ON e.`department_id` = d.`department_id` WHERE d.`department_id` IS NULL UNION ALL #没有去重操作,效率高 SELECT employee_id,last_name,department_name FROM employees e RIGHT JOIN departments d ON e.`department_id` = d.`department_id`;
右下图 左中图 + 右中图 A ∪B- A∩B 或者 (A - A∩B) ∪ (B - A∩B) SELECT employee_id,last_name,department_name FROM employees e LEFT JOIN departments d ON e.`department_id` = d.`department_id` WHERE d.`department_id` IS NULL UNION ALL SELECT employee_id,last_name,department_name FROM employees e RIGHT JOIN departments d ON e.`department_id` = d.`department_id` WHERE e.`department_id` IS NULL
SQL99 在 SQL92 的基础上提供了一些特殊语法,比如 NATURAL JOIN
用来表示自然连接。我们可以把自然连接理解为 SQL92 中的等值连接。它会帮你自动查询两张连接表中所有相同的字段
,然后进行等值连接
。
SELECT employee_id,last_name,department_name FROM employees e NATURAL JOIN departments d;
上面的写法的效果和下面是一样的
SELECT employee_id,last_name,department_name FROM employees e JOIN departments d USING (department_id);
当我们进行连接的时候,SQL99还支持使用 USING 指定数据表里的同名字段
进行等值连接。但是只能配合JOIN一起使用。比如:
SELECT employee_id,last_name,department_name FROM employees e JOIN departments d USING (department_id);
你能看出与自然连接 NATURAL JOIN 不同的是,USING 指定了具体的相同的字段名称,你需要在 USING 的括号 () 中填入要指定的同名字段。同时使用 JOIN...USING
可以简化 JOIN ON 的等值连接。它与下面的 SQL 查询结果是相同的:
SELECT employee_id,last_name,department_name FROM employees e ,departments d WHERE e.department_id = d.department_id;
注意:using只能和join配合使用,而且要求两个关联字段在关联表中名称一致,而且只能表示关联字段值相等
子查询就是查询语句的嵌套,有多个select语句
子查询的引入:
– 查询所有比“CLARK”工资高的员工的信息
– 步骤1:“CLARK”工资
mysql> select * from emp where ename='clark'; 工资2450 +-------+-------+---------+------+------------+---------+------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+-------+---------+------+------------+---------+------+--------+ | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | +-------+-------+---------+------+------------+---------+------+--------+ 1 row in set (0.00 sec)
– 步骤2:查询所有工资比2450高的员工的信息
mysql> select * from emp where sal > 2450; +-------+-------+-----------+------+------------+---------+------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+-------+-----------+------+------------+---------+------+--------+ | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | +-------+-------+-----------+------+------------+---------+------+--------+ 5 rows in set (0.01 sec)
两次命令解决问题的话,效率低 ,第二个命令依托于第一个命令,第一个命令的结果给第二个命令使用,但是
因为第一个命令的结果可能不确定要改,所以第二个命令也会导致修改
将步骤1和步骤2合并 --》子查询:-- 一个命令解决问题 --》效率高
mysql> select *from emp where sal>(select sal from emp where ename='clark'); +-------+-------+-----------+------+------------+---------+------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+-------+-----------+------+------------+---------+------+--------+ | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | +-------+-------+-----------+------+------------+---------+------+--------+ 5 rows in set (0.00 sec)
【2】执行顺序:
先执行子查询,再执行外查询;
【3】不相关子查询:
子查询可以独立运行,称为不相关子查询。
【4】不相关子查询分类:
根据子查询的结果行数,可以分为单行子查询和多行子查询。
练习
单行子查询
mysql> -- 单行子查询 mysql> -- 查询工资高与拼接工资的员工名字和工资 mysql> select ename,sal from emp -> where sal>(select avg(sal) from emp); +-------+---------+ | ename | sal | +-------+---------+ | JONES | 2975.00 | | BLAKE | 2850.00 | | CLARK | 2450.00 | | SCOTT | 3000.00 | | KING | 5000.00 | | FORD | 3000.00 | +-------+---------+ 6 rows in set (0.00 sec)
-- 查询和CLARK同一部门且比他工资低的雇员名字和工资。 select ename,sal from emp where deptno = (select deptno from emp where ename = 'CLARK') and sal < (select sal from emp where ename = 'CLARK') +--------+---------+ | ename | sal | +--------+---------+ | MILLER | 1300.00 | +--------+---------+ 1 row in set (0.00 sec)
多行子查询: 【1】查询【部门20中职务同部门10的雇员一样的】雇员信息。 -- 查询雇员信息 select * from emp; +-------+--------+-----------+------+------------+---------+---------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+--------+-----------+------+------------+---------+---------+--------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | +-------+--------+-----------+------+------------+---------+---------+--------+ 14 rows in set (0.00 sec) -- 查询部门20中的雇员信息 select * from emp where deptno = 20; +-------+-------+---------+------+------------+---------+------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+-------+---------+------+------------+---------+------+--------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | +-------+-------+---------+------+------------+---------+------+--------+ 5 rows in set (0.00 sec) -- 部门10的雇员的职务: select job from emp where deptno = 10; -- MANAGER,PRESIDENT,CLERK +-----------+ | job | +-----------+ | MANAGER | | PRESIDENT | | CLERK | +-----------+ 3 rows in set (0.00 sec) -- 查询部门20中职务同部门10的雇员一样的雇员信息。 select * from emp where deptno = 20 and job in (select job from emp where deptno = 10) -- > Subquery returns more than 1 row select * from emp where deptno = 20 and job = any(select job from emp where deptno = 10)
【2】查询工资比所有的“SALESMAN”都高的雇员的编号、名字和工资。 -- 查询雇员的编号、名字和工资 select empno,ename,sal from emp +-------+--------+---------+ | empno | ename | sal | +-------+--------+---------+ | 7369 | SMITH | 800.00 | | 7499 | ALLEN | 1600.00 | | 7521 | WARD | 1250.00 | | 7566 | JONES | 2975.00 | | 7654 | MARTIN | 1250.00 | | 7698 | BLAKE | 2850.00 | | 7782 | CLARK | 2450.00 | | 7788 | SCOTT | 3000.00 | | 7839 | KING | 5000.00 | | 7844 | TURNER | 1500.00 | | 7876 | ADAMS | 1100.00 | | 7900 | JAMES | 950.00 | | 7902 | FORD | 3000.00 | | 7934 | MILLER | 1300.00 | +-------+--------+---------+ 14 rows in set (0.00 sec) -- “SALESMAN”的工资: select sal from emp where job = 'SALESMAN'; +---------+ | sal | +---------+ | 1600.00 | | 1250.00 | | 1250.00 | | 1500.00 | +---------+ 4 rows in set (0.00 sec) -- 查询工资比所有的“SALESMAN”都高的雇员的编号、名字和工资。 -- 多行子查询: select empno,ename,sal from emp where sal > all(select sal from emp where job = 'SALESMAN'); +-------+-------+---------+ | empno | ename | sal | +-------+-------+---------+ | 7566 | JONES | 2975.00 | | 7698 | BLAKE | 2850.00 | | 7782 | CLARK | 2450.00 | | 7788 | SCOTT | 3000.00 | | 7839 | KING | 5000.00 | | 7902 | FORD | 3000.00 | +-------+-------+---------+ 6 rows in set (0.00 sec)
【1】不相关的子查询引入:
不相关的子查询:子查询可以独立运行,先运行子查询,再运行外查询。
相关子查询:子查询不可以独立运行,并且先运行外查询,再运行子查询
【2】不相关的子查询优缺点:
好处:简单 功能强大(一些使用不相关子查询不能实现或者实现繁琐的子查询,可以使用相关子查询实现)
缺点:稍难理解
【3】sql展示:
-- 【1】查询最高工资的员工 (不相关子查询) select * from emp where sal = (select max(sal) from emp) -- 【2】查询本部门最高工资的员工 (相关子查询) -- 方法1:通过不相关子查询实现: select * from emp where deptno = 10 and sal = (select max(sal) from emp where deptno = 10) union select * from emp where deptno = 20 and sal = (select max(sal) from emp where deptno = 20) union select * from emp where deptno = 30 and sal = (select max(sal) from emp where deptno = 30) -- 缺点:语句比较多,具体到底有多少个部分未知 -- 方法2: 相关子查询 select * from emp e where sal = (select max(sal) from emp where deptno = e.deptno) order by deptno -- 【3】查询工资高于其所在岗位的平均工资的那些员工 (相关子查询) -- 不相关子查询: select * from emp where job = 'CLERK' and sal >= (select avg(sal) from emp where job = 'CLERK') union ...... -- 相关子查询: select * from emp e where sal >= (select avg(sal) from emp e2 where e2.job = e.job)
聚合函数作用于一组数据,并对一组数据返回一个值。
聚合函数类型
AVG()
SUM()
MAX()
MIN()
COUNT()
语法
注意:聚合函数不允许嵌套使用
可以对数值型数据使用AVG 和 SUM 函数。
他们在计算有空值的时候,会把非空计算进去,然后自动忽略空值
AVG=SUM/COUNT
mysql> select * from emp; +-------+--------+-----------+------+------------+---------+---------+--------+ | EMPNO | ENAME | JOB | MGR | HIREDATE | SAL | COMM | DEPTNO | +-------+--------+-----------+------+------------+---------+---------+--------+ | 7369 | SMITH | CLERK | 7902 | 1980-12-17 | 800.00 | NULL | 20 | | 7499 | ALLEN | SALESMAN | 7698 | 1981-02-20 | 1600.00 | 300.00 | 30 | | 7521 | WARD | SALESMAN | 7698 | 1981-02-22 | 1250.00 | 500.00 | 30 | | 7566 | JONES | MANAGER | 7839 | 1981-04-02 | 2975.00 | NULL | 20 | | 7654 | MARTIN | SALESMAN | 7698 | 1981-09-28 | 1250.00 | 1400.00 | 30 | | 7698 | BLAKE | MANAGER | 7839 | 1981-05-01 | 2850.00 | NULL | 30 | | 7782 | CLARK | MANAGER | 7839 | 1981-06-09 | 2450.00 | NULL | 10 | | 7788 | SCOTT | ANALYST | 7566 | 1987-04-19 | 3000.00 | NULL | 20 | | 7839 | KING | PRESIDENT | NULL | 1981-11-17 | 5000.00 | NULL | 10 | | 7844 | TURNER | SALESMAN | 7698 | 1981-09-08 | 1500.00 | 0.00 | 30 | | 7876 | ADAMS | CLERK | 7788 | 1987-05-23 | 1100.00 | NULL | 20 | | 7900 | JAMES | CLERK | 7698 | 1981-12-03 | 950.00 | NULL | 30 | | 7902 | FORD | ANALYST | 7566 | 1981-12-03 | 3000.00 | NULL | 20 | | 7934 | MILLER | CLERK | 7782 | 1982-01-23 | 1300.00 | NULL | 10 | +-------+--------+-----------+------+------------+---------+---------+--------+ 14 rows in set (0.00 sec)
可以对任意数据类型的数据使用 MIN 和 MAX 函数。
COUNT(*)返回表中记录总数,适用于任意数据类型。
mysql> select count(*) from emp; +----------+ | count(*) | +----------+ | 14 | +----------+ 1 row in set (0.01 sec)
计算指定字段再查询结果中出现的个数
mysql> select count(comm) from emp; +-------------+ | count(comm) | +-------------+ | 4 | +-------------+ 1 row in set (0.00 sec)
COUNT(expr) 返回expr不为空的记录总数。
-问题:用count(*),count(1),count(列名)谁好呢?
其实,对于MyISAM引擎的表是没有区别的。这种引擎内部有一计数器在维护着行数。
Innodb引擎的表用count(*),count(1)直接读行数,复杂度是O(n),因为innodb真的要去数一遍。但好于具体的count(列名)。
问题:能不能使用count(列名)替换count(*)?
不要使用 count(列名)来替代 count(*)
,count(*)
是 SQL92 定义的标准统计行数的语法,跟数据库无关,跟 NULL 和非 NULL 无关。
说明: count(*)会统计值为 NULL 的行,而 count(列名)不会统计此列为 NULL 值的行。
这样子讲的话,大家可能还比较懵,接下来,我来演示一下
使用group by可以进行分组,我们以前使用avg可以求出所有员工的平均工资,但是如果我们想要求各个部门的员工的平均工资的话,就得对部门进行分组,以部门为单位来划分,然后求出他们各自的平均工资
注意:字段不可以和多行函数一起使用,因为记录个数不匹配,这样就会导致查询的数据没有全部展示,但是,如果这个字段属于分组是可以的
mysql> select deptno,avg(sal) from emp group by deptno; +--------+-------------+ | deptno | avg(sal) | +--------+-------------+ | 20 | 2175.000000 | | 30 | 1566.666667 | | 10 | 2916.666667 | +--------+-------------+ 3 rows in set (0.00 sec)
统计各个岗位的平均工资 mysql> select job,avg(sal) from emp group by job; +-----------+-------------+ | job | avg(sal) | +-----------+-------------+ | CLERK | 1037.500000 | | SALESMAN | 1400.000000 | | MANAGER | 2758.333333 | | ANALYST | 3000.000000 | | PRESIDENT | 5000.000000 | +-----------+-------------+ 5 rows in set (0.00 sec)
使用having的条件:
1 行已经被分组。
2. 使用了聚合函数。
3. 满足HAVING 子句中条件的分组将被显示。
4. HAVING 不能单独使用,必须要跟 GROUP BY 一起使用。
统计各个部门的平均工资 ,只显示平均工资2000以上的 - 分组以后进行二次筛选 having
mysql> select deptno,avg(sal) from emp -> group by deptno -> having avg(sal) >2000; +--------+-------------+ | deptno | avg(sal) | +--------+-------------+ | 20 | 2175.000000 | | 10 | 2916.666667 | +--------+-------------+ 2 rows in set (0.01 sec)
区别1:WHERE 可以直接使用表中的字段作为筛选条件,但不能使用分组中的计算函数作为筛选条件;HAVING 必须要与 GROUP BY 配合使用,可以把分组计算的函数和分组字段作为筛选条件。
在需要对数据进行分组统计时,HAVING语句能够完成WHERE语句无法完成的任务。由于查询语法结构中WHERE在GROUP BY之前,因此无法筛选分组结果。HAVING 在 GROUP BY 之后,可以使用分组字段和分组中的计算函数,对分组的结果集进行筛选,这个功能是 WHERE 无法完成的。另外,WHERE排除的记录不再包括在分组中。
区别2:如果需要通过连接从关联表中获取需要的数据,WHERE 是先筛选后连接,而 HAVING 是先连接后筛选。 这一点,就决定了在关联查询中,WHERE 比 HAVING 更高效。因为 WHERE 可以先筛选,用一个筛选后的较小数据集和关联表进行连接,这样占用的资源比较少,执行效率也比较高。HAVING 则需要先把结果集准备好,也就是用未被筛选的数据集进行关联,然后对这个大的数据集进行筛选,这样占用的资源就比较多,执行效率也较低。
小结如下:
开发中的选择:
WHERE 和 HAVING 也不是互相排斥的,我们可以在一个查询里面同时使用 WHERE 和 HAVING。HAVING is used for conditions that involve grouping and aggregation functions, while WHERE is used for regular conditions.。这样,我们就既利用了 WHERE 条件的高效快速,又发挥了 HAVING 可以使用包含分组统计函数的查询条件的优点。当数据量特别大的时候,运行效率会有很大的差别。
SELECT … FROM … WHERE … GROUP BY … HAVING … ORDER BY … LIMIT…
2.SELECT 语句的执行顺序
FROM -> WHERE -> GROUP BY -> HAVING -> SELECT 的字段 -> DISTINCT -> ORDER BY -> LIMIT
比如你写了一个 SQL 语句,那么它的关键字顺序和执行顺序是下面这样的:
SELECT DISTINCT player_id, player_name, count(*) as num 顺序 5 FROM player JOIN team ON player.team_id = team.team_id 顺序 1 WHERE height > 1.80 顺序 2 GROUP BY player.team_id 顺序 3 HAVING num > 2 顺序 4 ORDER BY num DESC 顺序 6 LIMIT 2 顺序 7
SELECT 是先执行 FROM 这一步的。在这个阶段,如果是多张表联查,还会经历下面的几个步骤:
首先先通过 CROSS JOIN 求笛卡尔积,相当于得到虚拟表 vt(virtual table)1-1;
通过 ON 进行筛选,在虚拟表 vt1-1 的基础上进行筛选,得到虚拟表 vt1-2;
外部行を追加します。左結合、右リンク、または完全結合を使用している場合、外部行が関係します。つまり、仮想テーブル vt1-2 に外部行を追加すると、仮想テーブル vt1-3 が作成されます。
3 つ以上のテーブルを操作する場合は、すべてのテーブルが処理されるまで上記の手順を繰り返します。このプロセスにより、オリジナルのデータが得られます。
クエリ データ テーブルの元のデータ (最終的な仮想テーブル vt1) を取得したら、これに基づいて WHERE ステージに進むことができます。この段階で、vt1 テーブルの結果がフィルタリングされ、仮想テーブル vt2 が生成されます。
次は第 3 段階と第 4 段階で、グループ分けとスクリーニングの段階です。この段階では、実際に仮想テーブルvt2に基づいてグループ化およびグループフィルタリングが実行され、中間仮想テーブルvt3およびvt4が得られる。
条件付きフィルタリング部分が完了したら、テーブルから抽出したフィールドをフィルタリングできます。つまり、SELECT ステージと DISTINCT ステージに入ることができます。
まず、目的のフィールドが SELECT ステージで抽出され、次に DISTINCT ステージで重複する行がフィルターで除外され、それぞれ中間仮想テーブル vt5-1 と vt5-2 が取得されます。
必要なフィールド データを抽出した後、指定されたフィールドに従って並べ替えることができます (ORDER BY ステージ)。仮想テーブル vt6 を取得します。
最後に、vt6 に基づいて、LIMIT ステージである指定行のレコードが取り出され、仮想テーブル vt7 に相当する最終結果が得られます。
もちろん、SELECT ステートメントを作成するときに、すべてのキーワードが存在するわけではないため、対応するステージは省略されます。
同時に、SQL は英語に似た構造化クエリ言語であるため、SELECT ステートメントを作成するときは、対応するキーワードの順序にも注意する必要があります。実行順序については、先ほど述べたとおりです。
以上がMySQLデータベースクエリでマルチテーブルクエリを実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。