ホームページ >Java >&#&チュートリアル >Java 文字列のエンコードとデコードのパフォーマンスを向上させる方法

Java 文字列のエンコードとデコードのパフォーマンスを向上させる方法

WBOY
WBOY転載
2023-05-20 11:28:571195ブラウズ

    1. 一般的な文字列エンコーディング

    一般的な文字列エンコーディングは次のとおりです:

    LATIN1 は ASCII 文字のみを保存できます (ISO -8859 とも呼ばれます)。 -1。

    UTF-8 は、1、2、または 3 バイトを使用して文字を表す可変長バイト エンコーディングです。中国語は通常、表現するために 3 バイトを必要とするため、中国語シーンの UTF-8 エンコードには通常より多くのスペースが必要であり、代わりに GBK/GB2312/GB18030 が使用されます。

    UTF-16 2 バイト。1 つの文字は 2 バイトで表す必要があります。UCS-2 (2 バイトユニバーサル文字セット) とも呼ばれます。 UTF-16 には、ビッグエンドとスモールエンドの区別により、UTF-16BE と UTF-16LE の 2 つの形式があり、デフォルトの UTF-16 は UTF-16BE を指します。 Java言語のcharはUTF-16LEエンコーディングです。

    GB18030 は可変長バイト エンコーディングを採用しており、各文字は 1、2、または 3 バイトで表されます。 UTF8 と同様に、中国語を表すために 2 文字を使用するとバイト数を節約できますが、この方法は国際的には普遍的ではありません。

    Java 文字列のエンコードとデコードのパフォーマンスを向上させる方法

    #メモリ内の文字列は計算の便宜上、通常は等幅文字を使用しており、Java 言語の char も .NET の char も UTF-16 を使用します。初期の Windows-NT は UTF-16 のみをサポートしていました。

    2. エンコーディング変換のパフォーマンス

    UTF-16 と UTF-8 間の変換はより複雑で、通常はパフォーマンスが低下します。

    Java 文字列のエンコードとデコードのパフォーマンスを向上させる方法

    次は、UTF-16 を UTF-8 エンコーディングに変換する実装です。アルゴリズムがより複雑であるため、パフォーマンスが低下していることがわかります。ベクター API は使用できません。最適化を行ってください。

    static int encodeUTF8(char[] utf16, int off, int len, byte[] dest, int dp) {
        int sl = off + len, last_offset = sl - 1;
    
        while (off < sl) {
            char c = utf16[off++];
            if (c < 0x80) {
                // Have at most seven bits
                dest[dp++] = (byte) c;
            } else if (c < 0x800) {
                // 2 dest, 11 bits
                dest[dp++] = (byte) (0xc0 | (c >> 6));
                dest[dp++] = (byte) (0x80 | (c & 0x3f));
            } else if (c >= &#39;\uD800&#39; && c < &#39;\uE000&#39;) {
                int uc;
                if (c < &#39;\uDC00&#39;) {
                    if (off > last_offset) {
                        dest[dp++] = (byte) &#39;?&#39;;
                        return dp;
                    }
    
                    char d = utf16[off];
                    if (d >= &#39;\uDC00&#39; && d < &#39;\uE000&#39;) {
                        uc = (c << 10) + d + 0xfca02400;
                    } else {
                        throw new RuntimeException("encodeUTF8 error", new MalformedInputException(1));
                    }
                } else {
                    uc = c;
                }
                dest[dp++] = (byte) (0xf0 | ((uc >> 18)));
                dest[dp++] = (byte) (0x80 | ((uc >> 12) & 0x3f));
                dest[dp++] = (byte) (0x80 | ((uc >> 6) & 0x3f));
                dest[dp++] = (byte) (0x80 | (uc & 0x3f));
                off++; // 2 utf16
            } else {
                // 3 dest, 16 bits
                dest[dp++] = (byte) (0xe0 | ((c >> 12)));
                dest[dp++] = (byte) (0x80 | ((c >> 6) & 0x3f));
                dest[dp++] = (byte) (0x80 | (c & 0x3f));
            }
        }
        return dp;
    }

    Java の char は UTF-16LE でエンコードされているため、char[] を UTF-16LE でエンコードされた byte[] に変換する必要がある場合は、sun.misc.Unsafe#copyMemory メソッドを使用してすばやくコピーできます。例:

    static int writeUtf16LE(char[] chars, int off, int len, byte[] dest, final int dp) {
        UNSAFE.copyMemory(chars
                , CHAR_ARRAY_BASE_OFFSET + off * 2
                , dest
                , BYTE_ARRAY_BASE_OFFSET + dp
                , len * 2
        );
        dp += len * 2;
        return dp;
    }

    3. Java 文字列エンコード

    JDK のバージョンが異なると、実装される文字列処理メソッドも異なるため、パフォーマンスも異なります。 JDK 9 以降では、String は内部的に LATIN1 エンコーディングも使用できますが、char は引き続き UTF-16 エンコーディングを使用します。

    3.1. JDK 6 より前の String 実装

    static class String {
        final char[] value;
        final int offset;
        final int count;
    }

    Java 6 より前では、String.subString メソッドによって生成された String オブジェクトは、元の String オブジェクトと char[] 値を共有していました。 subString メソッドから返された String の char[] は参照されるため、GC によってリサイクルすることはできません。多くのライブラリは、JDK 6 以前の問題を防ぐために、subString メソッドの使用を避けています。

    3.2. JDK 7/8 での文字列の実装

    static class String {
        final char[] value;
    }

    JDK 7 以降では、オフセット フィールドとカウント フィールドが文字列から削除され、value.length が元のカウントになります。これにより、大きな char[] を参照する subString の問題が回避され、最適化が容易になり、その結果、JDK7/8 での String 操作のパフォーマンスが Java 6 に比べて大幅に向上しました。

    3.3. JDK 9/10/11の実装

    static class String {
        final byte code;
        final byte[] value;
    
        static final byte LATIN1 = 0;
        static final byte UTF16  = 1;
    }

    JDK 9以降では、値の型がchar[]からbyte[]に変わり、フィールドコードが追加されます。 ASCII 文字の場合、LATIN エンコードを使用するには value を使用します。非 ASCII 文字がある場合は、UTF16 エンコードを使用します。この混合エンコード方式により、英語のシーンが占有するメモリが少なくなります。欠点は、Java 9 の String API のパフォーマンスが JDK 8 ほど良くない可能性があることです。特に、文字列を構築するために char[] が渡されると、文字列はラテン語でエンコードされた byte[] に圧縮されます。 、シナリオによっては 10% 減少する可能性があります。

    4. 文字列を素早く構築する方法

    文字列の不変性を実現するために、文字列を構築する際にコピー処理が発生します。文字列のようなコピーは避ける必要があります。

    たとえば、次は JDK8 での String のコンストラクターの実装です。

    public final class String {
        public String(char value[]) {
            this.value = Arrays.copyOf(value, value.length);
        }
    }

    JDK8 にはコピーしないコンストラクターがありますが、このメソッドはパブリックではないため、 MethodHandles.Lookup と LambdaMetafactory は呼び出すためのリフレクションにバインドされており、記事の後半でこの手法を紹介するコードがあります。

    public final class String {
        String(char[] value, boolean share) {
            // assert share : "unshared not supported";
            this.value = value;
        }
    }

    文字をすばやく構築するには 3 つの方法があります:

    • MethodHandles.Lookup と LambdaMetafactory を使用してリフレクションをバインドします

    • Use JavaLangAccess の関連メソッド

    • Unsafe を使用して直接構築する

    1 と 2 のパフォーマンスは同様で、3 はわずかに遅くなりますが、比較すると新しい文字を直接使用する 文字列と比較すると、どちらも高速です。 JMH テストを使用した JDK8 のデータは次のとおりです: 936.754 ops/ms

    StringCreateBenchmark.langAccess thrpt 5 784029.186 ± 2734.300 ops/ms
    StringCreateBenchmark.unsafe thrpt 5 761176.319 ± 11914.549 ops/ms

    文字列ベンチマークを作成します。 newString thrpt 5 140883.533 ± 2217.773 ops/ms

    #JDK 9 以降、すべて ASCII 文字を含むシーンでは、直接構築するとより良い結果が得られます。

    4.1 基于MethodHandles.Lookup & LambdaMetafactory绑定反射的快速构造字符串的方法

    4.1.1 JDK8快速构造字符串

    public static BiFunction<char[], Boolean, String> getStringCreatorJDK8() throws Throwable {
       Constructor<MethodHandles.Lookup> constructor = MethodHandles.Lookup.class.getDeclaredConstructor(Class.class, int.class);
       constructor.setAccessible(true);
        MethodHandles lookup = constructor.newInstance(
              String.class
                 , -1 // Lookup.TRUSTED
                 );
        
        MethodHandles.Lookup caller = lookup.in(String.class);
      
        MethodHandle handle = caller.findConstructor(
                    String.class, MethodType.methodType(void.class, char[].class, boolean.class)
                    );
    
        CallSite callSite = LambdaMetafactory.metafactory(
                caller
                , "apply"
                , MethodType.methodType(BiFunction.class)
                , handle.type().generic()
                , handle
                , handle.type()
                );
    
        return (BiFunction) callSite.getTarget().invokeExact();
    }

    4.1.2 JDK 11快速构造字符串的方法

    public static ToIntFunction<String> getStringCode11() throws Throwable {
        Constructor<MethodHandles.Lookup> constructor = MethodHandles.Lookup.class.getDeclaredConstructor(Class.class, int.class);
        constructor.setAccessible(true);
        MethodHandles.Lookup lookup = constructor.newInstance(
                String.class
                , -1 // Lookup.TRUSTED
        );
    
        MethodHandles.Lookup caller = lookup.in(String.class);
        MethodHandle handle = caller.findVirtual(
                String.class, "coder", MethodType.methodType(byte.class)
       );
    
        CallSite callSite = LambdaMetafactory.metafactory(
                caller
                , "applyAsInt"
                , MethodType.methodType(ToIntFunction.class)
                , MethodType.methodType(int.class, Object.class)
                , handle
                , handle.type()
        );
    
        return (ToIntFunction<String>) callSite.getTarget().invokeExact();
    }
    if (JDKUtils.JVM_VERSION == 11) {
        Function<byte[], String> stringCreator = JDKUtils.getStringCreatorJDK11();
    
        byte[] bytes = new byte[]{&#39;a&#39;, &#39;b&#39;, &#39;c&#39;};
        String apply = stringCreator.apply(bytes);
        assertEquals("abc", apply);
    }

    4.1.3 JDK 17快速构造字符串的方法

    在JDK 17中,MethodHandles.Lookup使用Reflection.registerFieldsToFilter对lookupClass和allowedModes做了保护,网上搜索到的通过修改allowedModes的办法是不可用的。

    在JDK 17中,要通过配置JVM启动参数才能使用MethodHandlers。如下:

    --add-opens java.base/java.lang.invoke=ALL-UNNAMED
    public static BiFunction<byte[], Charset, String> getStringCreatorJDK17() throws Throwable {
        Constructor<MethodHandles.Lookup> constructor = MethodHandles.Lookup.class.getDeclaredConstructor(Class.class, Class.class, int.class);
        constructor.setAccessible(true);
        MethodHandles.Lookup lookup = constructor.newInstance(
               String.class
                , null
                , -1 // Lookup.TRUSTED
        );
    
        MethodHandles.Lookup caller = lookup.in(String.class);
        MethodHandle handle = caller.findStatic(
                String.class, "newStringNoRepl1", MethodType.methodType(String.class, byte[].class, Charset.class)
        );
    
        CallSite callSite = LambdaMetafactory.metafactory(
                caller
                , "apply"
                , MethodType.methodType(BiFunction.class)
                , handle.type().generic()
                , handle
                , handle.type()
        );
        return (BiFunction<byte[], Charset, String>) callSite.getTarget().invokeExact();
    }
    if (JDKUtils.JVM_VERSION == 17) {
        BiFunction<byte[], Charset, String> stringCreator = JDKUtils.getStringCreatorJDK17();
    
        byte[] bytes = new byte[]{&#39;a&#39;, &#39;b&#39;, &#39;c&#39;};
        String apply = stringCreator.apply(bytes, StandardCharsets.US_ASCII);
        assertEquals("abc", apply);
    }

    4.2 基于JavaLangAccess快速构造

    通过SharedSecrets提供的JavaLangAccess,也可以不拷贝构造字符串,但是这个比较麻烦,JDK 8/11/17的API都不一样,对一套代码兼容不同的JDK版本不方便,不建议使用。

    JavaLangAccess javaLangAccess = SharedSecrets.getJavaLangAccess();
    javaLangAccess.newStringNoRepl(b, StandardCharsets.US_ASCII);

    4.3 基于Unsafe实现快速构造字符串

    public static final Unsafe UNSAFE;
    static {
        Unsafe unsafe = null;
        try {
            Field theUnsafeField = Unsafe.class.getDeclaredField("theUnsafe");
            theUnsafeField.setAccessible(true);
            unsafe = (Unsafe) theUnsafeField.get(null);
        } catch (Throwable ignored) {}
        UNSAFE = unsafe;
    }
    
    ////////////////////////////////////////////
    
    Object str = UNSAFE.allocateInstance(String.class);
    UNSAFE.putObject(str, valueOffset, chars);

    注意:在JDK 9之后,实现是不同,比如:

    Object str = UNSAFE.allocateInstance(String.class);
    UNSAFE.putByte(str, coderOffset, (byte) 0);
    UNSAFE.putObject(str, valueOffset, (byte[]) bytes);

    4.4 快速构建字符串的技巧应用:

    如下的方法格式化日期为字符串,性能就会非常好。

    public String formatYYYYMMDD(Calendar calendar) throws Throwable {
        int year = calendar.get(Calendar.YEAR);
        int month = calendar.get(Calendar.MONTH) + 1;
        int dayOfMonth = calendar.get(Calendar.DAY_OF_MONTH);
    
        
        byte y0 = (byte) (year / 1000 + &#39;0&#39;);
        byte y1 = (byte) ((year / 100) % 10 + &#39;0&#39;);
        byte y2 = (byte) ((year / 10) % 10 + &#39;0&#39;);
        byte y3 = (byte) (year % 10 + &#39;0&#39;);
        byte m0 = (byte) (month / 10 + &#39;0&#39;);
        byte m1 = (byte) (month % 10 + &#39;0&#39;);
        byte d0 = (byte) (dayOfMonth / 10 + &#39;0&#39;);
        byte d1 = (byte) (dayOfMonth % 10 + &#39;0&#39;);
    
        if (JDKUtils.JVM_VERSION >= 9) {
            byte[] bytes = new byte[] {y0, y1, y2, y3, m0, m1, d0, d1};
    
            if (JDKUtils.JVM_VERSION == 17) {
                return JDKUtils.getStringCreatorJDK17().apply(bytes, StandardCharsets.US_ASCII);
            }
    
            if (JDKUtils.JVM_VERSION <= 11) {
                return JDKUtils.getStringCreatorJDK11().apply(bytes);
            }
    
            return new String(bytes, StandardCharsets.US_ASCII);
        }
    
        char[] chars = new char[]{
                (char) y0, 
                (char) y1, 
                (char) y2, 
                (char) y3, 
                (char) m0,
                (char) m1, 
                (char) d0, 
                (char) d1
        };
    
        if (JDKUtils.JVM_VERSION == 8) {
            return JDKUtils.getStringCreatorJDK8().apply(chars, true);
        }
    
        return new String(chars);
    }

    5.快速遍历字符串的办法

    无论JDK什么版本,String.charAt都是一个较大的开销,JIT的优化效果并不好,无法消除参数index范围检测的开销,不如直接操作String里面的value数组。

    public final class String {
        private final char value[];
        
        public char charAt(int index) {
            if ((index < 0) || (index >= value.length)) {
                throw new StringIndexOutOfBoundsException(index);
            }
            return value[index];
        }
    }

    在JDK 9之后的版本,charAt开销更大

    public final class String {
        private final byte[] value;
        private final byte coder;
        
        public char charAt(int index) {
            if (isLatin1()) {
                return StringLatin1.charAt(value, index);
            } else {
                return StringUTF16.charAt(value, index);
            }
        }
    }

    5.1 获取String.value的方法

    获取String.value的方法有如下:

    • 使用Field反射

    • 使用Unsafe

    Unsafe和Field反射在JDK 8 JMH的比较数据如下:

    Benchmark                         Mode  Cnt        Score       Error   Units
    StringGetValueBenchmark.reflect  thrpt    5   438374.685 ±  1032.028  ops/ms
    StringGetValueBenchmark.unsafe   thrpt    5  1302654.150 ± 59169.706  ops/ms

    5.1.1 使用反射获取String.value

    static Field valueField;
    static {
        try {
            valueField = String.class.getDeclaredField("value");
            valueField.setAccessible(true);
        } catch (NoSuchFieldException ignored) {}
    }
    
    ////////////////////////////////////////////
    
    char[] chars = (char[]) valueField.get(str);

    5.1.2 使用Unsafe获取String.value

    static long valueFieldOffset;
    static {
        try {
            Field valueField = String.class.getDeclaredField("value");
            valueFieldOffset = UNSAFE.objectFieldOffset(valueField);
        } catch (NoSuchFieldException ignored) {}
    }
    
    ////////////////////////////////////////////
    
    char[] chars = (char[]) UNSAFE.getObject(str, valueFieldOffset);
    static long valueFieldOffset;
    static long coderFieldOffset;
    static {
        try {
            Field valueField = String.class.getDeclaredField("value");
            valueFieldOffset = UNSAFE.objectFieldOffset(valueField);
            
            Field coderField = String.class.getDeclaredField("coder");
            coderFieldOffset = UNSAFE.objectFieldOffset(coderField);
            
        } catch (NoSuchFieldException ignored) {}
    }
    
    ////////////////////////////////////////////
    
    byte coder = UNSAFE.getObject(str, coderFieldOffset);
    byte[] bytes = (byte[]) UNSAFE.getObject(str, valueFieldOffset);

    6.更快的encodeUTF8方法

    当能直接获取到String.value时,就可以直接对其做encodeUTF8操作,会比String.getBytes(StandardCharsets.UTF_8)性能好很多。

    6.1 JDK8高性能encodeUTF8的方法

    public static int encodeUTF8(char[] src, int offset, int len, byte[] dst, int dp) {
        int sl = offset + len;
        int dlASCII = dp + Math.min(len, dst.length);
    
        // ASCII only optimized loop
        while (dp < dlASCII && src[offset] < &#39;\u0080&#39;) {
            dst[dp++] = (byte) src[offset++];
        }
    
        while (offset < sl) {
            char c = src[offset++];
            if (c < 0x80) {
                // Have at most seven bits
                dst[dp++] = (byte) c;
            } else if (c < 0x800) {
                // 2 bytes, 11 bits
                dst[dp++] = (byte) (0xc0 | (c >> 6));
                dst[dp++] = (byte) (0x80 | (c & 0x3f));
            } else if (c >= &#39;\uD800&#39; && c < (&#39;\uDFFF&#39; + 1)) { //Character.isSurrogate(c) but 1.7
                final int uc;
                int ip = offset - 1;
                if (c >= &#39;\uD800&#39; && c < (&#39;\uDBFF&#39; + 1)) { // Character.isHighSurrogate(c)
                    if (sl - ip < 2) {
                        uc = -1;
                    } else {
                        char d = src[ip + 1];
                        // d >= &#39;\uDC00&#39; && d < (&#39;\uDFFF&#39; + 1)
                        if (d >= &#39;\uDC00&#39; && d < (&#39;\uDFFF&#39; + 1)) { // Character.isLowSurrogate(d)
                            uc = ((c << 10) + d) + (0x010000 - (&#39;\uD800&#39; << 10) - &#39;\uDC00&#39;); // Character.toCodePoint(c, d)
                        } else {
                            dst[dp++] = (byte) &#39;?&#39;;
                            continue;
                        }
                    }
                } else {
                    //
                    if (c >= &#39;\uDC00&#39; && c < (&#39;\uDFFF&#39; + 1)) { // Character.isLowSurrogate(c)
                        dst[dp++] = (byte) &#39;?&#39;;
                        continue;
                    } else {
                        uc = c;
                    }
                }
    
                if (uc < 0) {
                    dst[dp++] = (byte) &#39;?&#39;;
                } else {
                    dst[dp++] = (byte) (0xf0 | ((uc >> 18)));
                    dst[dp++] = (byte) (0x80 | ((uc >> 12) & 0x3f));
                    dst[dp++] = (byte) (0x80 | ((uc >> 6) & 0x3f));
                    dst[dp++] = (byte) (0x80 | (uc & 0x3f));
                    offset++; // 2 chars
                }
            } else {
                // 3 bytes, 16 bits
                dst[dp++] = (byte) (0xe0 | ((c >> 12)));
                dst[dp++] = (byte) (0x80 | ((c >> 6) & 0x3f));
                dst[dp++] = (byte) (0x80 | (c & 0x3f));
            }
        }
        return dp;
    }

    使用encodeUTF8方法举例

    char[] chars = UNSAFE.getObject(str, valueFieldOffset);
    // ensureCapacity(chars.length * 3)
    byte[] bytes = ...; // 
    int bytesLength = IOUtils.encodeUTF8(chars, 0, chars.length, bytes, bytesOffset);

    这样encodeUTF8操作,不会有多余的arrayCopy操作,性能会得到提升。

    6.1.1 性能测试比较

    测试代码

    public class EncodeUTF8Benchmark {
        static String STR = "01234567890ABCDEFGHIJKLMNOPQRSTUVWZYZabcdefghijklmnopqrstuvwzyz一二三四五六七八九十";
        static byte[] out;
    
        static long valueFieldOffset;
    
        static {
            out = new byte[STR.length() * 3];
            try {
                Field valueField = String.class.getDeclaredField("value");
                valueFieldOffset = UnsafeUtils.UNSAFE.objectFieldOffset(valueField);
            } catch (NoSuchFieldException e) {
                e.printStackTrace();
            }
        }
    
        @Benchmark
        public void unsafeEncodeUTF8() throws Exception {
            char[] chars = (char[]) UnsafeUtils.UNSAFE.getObject(STR, valueFieldOffset);
            int len = IOUtils.encodeUTF8(chars, 0, chars.length, out, 0);
        }
    
        @Benchmark
        public void getBytesUTF8() throws Exception {
            byte[] bytes = STR.getBytes(StandardCharsets.UTF_8);
            System.arraycopy(bytes, 0, out, 0, bytes.length);
        }
    
        public static void main(String[] args) throws RunnerException {
            Options options = new OptionsBuilder()
                    .include(EncodeUTF8Benchmark.class.getName())
                    .mode(Mode.Throughput)
                    .timeUnit(TimeUnit.MILLISECONDS)
                    .forks(1)
                    .build();
            new Runner(options).run();
        }
    }

    测试结果

    EncodeUTF8Benchmark.getBytesUTF8      thrpt    5  20690.960 ± 5431.442  ops/ms
    EncodeUTF8Benchmark.unsafeEncodeUTF8  thrpt    5  34508.606 ±   55.510  ops/ms

    从结果来看,通过unsafe + 直接调用encodeUTF8方法, 编码的所需要开销是newStringUTF8的58%。

    6.2 JDK9/11/17高性能encodeUTF8的方法

    public static int encodeUTF8(byte[] src, int offset, int len, byte[] dst, int dp) {
        int sl = offset + len;
        while (offset < sl) {
            byte b0 = src[offset++];
            byte b1 = src[offset++];
    
            if (b1 == 0 && b0 >= 0) {
                dst[dp++] = b0;
            } else {
                char c = (char)(((b0 & 0xff) << 0) | ((b1 & 0xff) << 8));
                if (c < 0x800) {
                    // 2 bytes, 11 bits
                    dst[dp++] = (byte) (0xc0 | (c >> 6));
                    dst[dp++] = (byte) (0x80 | (c & 0x3f));
                } else if (c >= &#39;\uD800&#39; && c < (&#39;\uDFFF&#39; + 1)) { //Character.isSurrogate(c) but 1.7
                    final int uc;
                    int ip = offset - 1;
                    if (c >= &#39;\uD800&#39; && c < (&#39;\uDBFF&#39; + 1)) { // Character.isHighSurrogate(c)
                        if (sl - ip < 2) {
                            uc = -1;
                        } else {
                            b0 = src[ip + 1];
                            b1 = src[ip + 2];
                            char d = (char) (((b0 & 0xff) << 0) | ((b1 & 0xff) << 8));
                            // d >= &#39;\uDC00&#39; && d < (&#39;\uDFFF&#39; + 1)
                            if (d >= &#39;\uDC00&#39; && d < (&#39;\uDFFF&#39; + 1)) { // Character.isLowSurrogate(d)
                                uc = ((c << 10) + d) + (0x010000 - (&#39;\uD800&#39; << 10) - &#39;\uDC00&#39;); // Character.toCodePoint(c, d)
                            } else {
                                return -1;
                            }
                        }
                    } else {
                        //
                        if (c >= &#39;\uDC00&#39; && c < (&#39;\uDFFF&#39; + 1)) { // Character.isLowSurrogate(c)
                            return -1;
                        } else {
                            uc = c;
                        }
                    }
    
                    if (uc < 0) {
                        dst[dp++] = (byte) &#39;?&#39;;
                    } else {
                        dst[dp++] = (byte) (0xf0 | ((uc >> 18)));
                        dst[dp++] = (byte) (0x80 | ((uc >> 12) & 0x3f));
                        dst[dp++] = (byte) (0x80 | ((uc >> 6) & 0x3f));
                        dst[dp++] = (byte) (0x80 | (uc & 0x3f));
                        offset++; // 2 chars
                    }
                } else {
                    // 3 bytes, 16 bits
                    dst[dp++] = (byte) (0xe0 | ((c >> 12)));
                    dst[dp++] = (byte) (0x80 | ((c >> 6) & 0x3f));
                    dst[dp++] = (byte) (0x80 | (c & 0x3f));
                }
            }
        }
        return dp;
    }

    使用encodeUTF8方法举例

    byte coder = UNSAFE.getObject(str, coderFieldOffset);
    byte[] value = UNSAFE.getObject(str, coderFieldOffset);
    
    if (coder == 0) {
        // ascii arraycopy
    } else {
        // ensureCapacity(chars.length * 3)
        byte[] bytes = ...; // 
        int bytesLength = IOUtils.encodeUTF8(value, 0, value.length, bytes, bytesOffset);
    }

    这样encodeUTF8操作,不会有多余的arrayCopy操作,性能会得到提升。

    以上がJava 文字列のエンコードとデコードのパフォーマンスを向上させる方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

    声明:
    この記事はyisu.comで複製されています。侵害がある場合は、admin@php.cn までご連絡ください。