いわゆる線形最小二乗法は、方程式を解くことの連続であると理解できますが、異なるのは、未知の量が方程式の数よりはるかに小さい場合、解けない問題が得られることです。最小二乗法の本質は、誤差を最小限に抑えながら未知の数値に値を割り当てることです。
最小二乗法は非常に古典的なアルゴリズムであり、私たちは高校でこの名前に触れたことがある、非常に一般的に使用されるアルゴリズムです。私は以前、線形最小二乗の原理と Python での実装について書きました: 最小二乗とその Python 実装; および scipy で非線形最小二乗を呼び出す方法: 非線形最小二乗(記事の最後にある補足コンテンツ) ;疎行列の最小二乗法である疎行列最小二乗法もあります。
以下では、numpy と scipy で実装された線形最小二乗法について説明し、2 つの速度を比較します。
numpy の実装
最小二乗法は numpy に実装されています。つまり、lstsq(a,b) は、a@x=b と同様に x を解くために使用されます。ここで、a は M× です。 N 行列; b が M 行のベクトルのとき、それは連立一次方程式を解くのとまったく同じです。 Ax=b のような連立方程式の場合、A がフルランク シミュレーションの場合は x=A−1b と表現でき、それ以外の場合は x=(AT と表現できます) A)−1ATb.
b が M×K の行列の場合、列ごとに x のセットが計算されます。
戻り値は 4 つあり、フィッティングによって得られた x、フィッティング誤差、行列 a のランク、行列 a の単一値形式です。
import numpy as np np.random.seed(42) M = np.random.rand(4,4) x = np.arange(4) y = M@x xhat = np.linalg.lstsq(M,y) print(xhat[0]) #[0. 1. 2. 3.]
scipy パッケージ
scipy.linalg は最小二乗関数も提供します。関数名も lstsq で、そのパラメーター リストは
lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None)
です。ここで、a、b は Ax です= b. どちらもオーバーライド可能なスイッチを提供します。これらを True に設定すると、実行時間を節約できます。さらに、この関数は、linalg の多くの関数が持つオプションである有限性チェックもサポートしています。戻り値は numpy の最小二乗関数と同じです。
cond は、特異値のしきい値を示す浮動小数点パラメータです。特異値が cond 未満の場合、特異値は破棄されます。
lapack_driver は文字列オプションで、LAPACK のどのアルゴリズム エンジンが選択されているかを示します。オプションで「gelsd」、「gelsy」、「gelss」です。
import scipy.linalg as sl xhat1 = sl.lstsq(M, y) print(xhat1[0]) # [0. 1. 2. 3.]
速度比較
最後に、2 つの最小二乗関数セットの速度比較を行います
from timeit import timeit N = 100 A = np.random.rand(N,N) b = np.arange(N) timeit(lambda:np.linalg.lstsq(A, b), number=10) # 0.015487500000745058 timeit(lambda:sl.lstsq(A, b), number=10) # 0.011151800004881807
今回は、2 つの関数はそれほど離れていません。つまり、行列の次元が 500 に拡大されても、この 2 つはほぼ同じになります。
N = 500 A = np.random.rand(N,N) b = np.arange(N) timeit(lambda:np.linalg.lstsq(A, b), number=10) 0.389679799991427 timeit(lambda:sl.lstsq(A, b), number=10) 0.35642060000100173
補足
Python は非線形最小二乗法を呼び出します
導入とコンストラクター
In In scipy さん、非線形最小二乗法の目的は、誤差関数の二乗和を最小化する一連の関数を見つけることです。これは次の式で表されます
i(x) の前処理として理解できます。
scipy.optimize は、least_squares(fun, x0, jac, bounds, method, ftol, xtol, gtol, x_scale, f_scale, loss, jac_sparsity, max_nfev, verbose, args, kwargs)として定義される非線形最小二乗関数 minimum_squares をカプセル化します。このうち、func と x0 は必須パラメータであり、func は解く関数、x0 はfunction input の初期値。これら 2 つのパラメータにはデフォルト値はありません。これらは入力する必要があるパラメータです。 bound は解決間隔です。デフォルトは (−∞,∞) です。verbose が 1 の場合、終了出力が表示されます。verbose が 2 の場合、操作中の詳細情報が出力されます。 。さらに、次のパラメータを使用してエラーを制御しますが、これは比較的簡単です。
デフォルト値 |
備考 | |
---|---|---|
10 | -8#機能許容範囲 | #xtol | #10
独立変数許容差 | #gtol | #10-8 |
#xx_scale | 1.0 | 変数の特性スケール|
1.0 | 残余マージン価値############ |
以上がPython で最小二乗法を呼び出して実装する方法の詳細内容です。詳細については、PHP 中国語 Web サイトの他の関連記事を参照してください。

Arraysinpython、特にvianumpy、arecrucialinscientificComputing fortheirefficienty andversitility.1)彼らは、fornumericaloperations、data analysis、andmachinelearning.2)numpy'simplementation incensuresfasteroperationsthanpasteroperations.3)arayableminablecickick

Pyenv、Venv、およびAnacondaを使用して、さまざまなPythonバージョンを管理できます。 1)Pyenvを使用して、複数のPythonバージョンを管理します。Pyenvをインストールし、グローバルバージョンとローカルバージョンを設定します。 2)VENVを使用して仮想環境を作成して、プロジェクトの依存関係を分離します。 3)Anacondaを使用して、データサイエンスプロジェクトでPythonバージョンを管理します。 4)システムレベルのタスク用にシステムPythonを保持します。これらのツールと戦略を通じて、Pythonのさまざまなバージョンを効果的に管理して、プロジェクトのスムーズな実行を確保できます。

numpyarrayshaveveraladvantages-averstandardpythonarrays:1)thealmuchfasterduetocベースのインプレンテーション、2)アレモレメモリ効率、特にlargedatasets、および3)それらは、拡散化された、構造化された形成術科療法、

パフォーマンスに対する配列の均一性の影響は二重です。1)均一性により、コンパイラはメモリアクセスを最適化し、パフォーマンスを改善できます。 2)しかし、タイプの多様性を制限し、それが非効率につながる可能性があります。要するに、適切なデータ構造を選択することが重要です。

craftexecutablepythonscripts、次のようになります

numpyarraysarasarebetterfornumeroperations andmulti-dimensionaldata、whilethearraymoduleissuitable forbasic、1)numpyexcelsinperformance and forlargedatasentassandcomplexoperations.2)thearraymuremememory-effictientivearientfa

NumPyArraySareBetterforHeavyNumericalComputing、whilethearrayarayismoreSuitableformemory-constrainedprojectswithsimpledatatypes.1)numpyarraysofferarays andatiledance andpeperancedatasandatassandcomplexoperations.2)thearraymoduleisuleiseightweightandmemememe-ef

ctypesallowsinging andmanipulatingc-stylearraysinpython.1)usectypestointerfacewithclibrariesforperformance.2)createc-stylearraysfornumericalcomputations.3)passarraystocfunctions foreffientientoperations.how、how、becuutiousmorymanagemation、performanceo


ホットAIツール

Undresser.AI Undress
リアルなヌード写真を作成する AI 搭載アプリ

AI Clothes Remover
写真から衣服を削除するオンライン AI ツール。

Undress AI Tool
脱衣画像を無料で

Clothoff.io
AI衣類リムーバー

Video Face Swap
完全無料の AI 顔交換ツールを使用して、あらゆるビデオの顔を簡単に交換できます。

人気の記事

ホットツール

SAP NetWeaver Server Adapter for Eclipse
Eclipse を SAP NetWeaver アプリケーション サーバーと統合します。

DVWA
Damn Vulnerable Web App (DVWA) は、非常に脆弱な PHP/MySQL Web アプリケーションです。その主な目的は、セキュリティ専門家が法的環境でスキルとツールをテストするのに役立ち、Web 開発者が Web アプリケーションを保護するプロセスをより深く理解できるようにし、教師/生徒が教室環境で Web アプリケーションを教え/学習できるようにすることです。安全。 DVWA の目標は、シンプルでわかりやすいインターフェイスを通じて、さまざまな難易度で最も一般的な Web 脆弱性のいくつかを実践することです。このソフトウェアは、

SublimeText3 Mac版
神レベルのコード編集ソフト(SublimeText3)

メモ帳++7.3.1
使いやすく無料のコードエディター

VSCode Windows 64 ビットのダウンロード
Microsoft によって発売された無料で強力な IDE エディター

ホットトピック









